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Abstract: Quadratically constrained quadratic programming (QCQP) has long been recognized

as a computationally challenging problem, particularly in large-scale or high-dimensional settings

where solving it directly becomes intractable. The complexity further escalates when a sparsity

constraint is involved, giving rise to the problem of sparse QCQP (SQCQP), which makes con-

ventional solution methods even less effective. Existing approaches for solving SQCQP typically

rely on mixed-integer programming formulations, relaxation techniques, or greedy heuristics but

often suffer from computational inefficiency and limited accuracy. In this work, we introduce a

novel paradigm by designing an efficient algorithm that directly addresses SQCQP. To be more

specific, we introduce P-stationarity to establish first- and second-order optimality conditions

of the original problem, leading to a system of nonlinear equations whose generalized Jacobian

is proven to be nonsingular under mild assumptions. Most importantly, these equations fa-

cilitate the development of a semismooth Newton-type method that exhibits significantly low

computational complexity due to the sparsity constraint and achieves a locally quadratic conver-

gence rate. Finally, extensive numerical experiments validate the accuracy and computational

efficiency of the algorithm compared to several established solvers.

Keywords: Sparse quadratically constrained quadratic programming, P-stationarity, station-

ary equations, semismooth Newton method, locally quadratic convergence rate

1 Introduction

We aim to solve the following sparse quadratically constrained quadratic programming (SQCQP),

min
x∈Rn

1

2
x⊤Q0x+ q⊤

0 x+ c0

s.t.
1

2
x⊤Qix+ q⊤

i x+ ci ≤ 0, i = 1, 2, . . . , k,

Ax− b ≤ 0, ∥x∥0 ≤ s, x ∈ X,

(SQCQP)

where Qi is an n-order symmetric matrix, qi ∈ Rn, and ci ∈ R, i = 0, 1, . . . , k, A ∈ Rm×n and

b ∈ Rm, ∥x∥0 is the ℓ0-norm of x, counting the number of its nonzero elements, s≪ n is an integer,

and X is a simple closed convex set. Throughout the paper, we assume X := X1 ×X2 × · · · ×Xn,

where each Xi ∋ 0 is a closed interval in R. The primary challenge of the SQCQP problem stems

from sparsity constraint ∥x∥0 ≤ s since the ℓ0-norm is non-convex and discontinuous, making the

problem generally NP-hard. Importantly, this complexity remains even in the convex setting, where

each Qi is positive semi-definite. Another challenge is the involvement of quadratic constraints,

especially in large-scale or high-dimensional settings. Nevertheless, the SQCQP problem finds
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extensive applications, including portfolio optimization with cardinality constraints on asset selec-

tion [4, 24], sparse generalized eigenvalue problems in high-dimensional data analysis and machine

learning [8, 40, 49], and sparse array beamforming in signal processing [32, 35].

1.1 Related work

To overcome the computational challenges posed by the ℓ0-norm, a variety of research efforts

have focused on reformulating (SQCQP) as a mixed-integer programming (MIP) by introducing

binary variables. This reformulation enables the application of various solution methods, including

branch-and-bound techniques, evolutionary algorithms, and other heuristic-based approaches. A

comprehensive overview of existing methods can be found in [9, 20, 26, 52] and the references

therein. However, these methods often exhibit limited computational efficiency, particularly when

applied to large-scale instances. Beyond the MIP-based reformulation, other existing approaches

for solving the SQCQP problem can be broadly classified into two categories.

a) Relaxation methods. One strategy for addressing the challenges stemmed from the ℓ0-norm is

to relax it by a continuous or convex surrogate function [1, 21, 27, 29]. An alternative line of

research transfers the original problem into nonlinear programming (NLP) with complementarity

constraints [18, 30, 36, 37, 50, 51]. While this reformulation formally aligns with the standard

NLP framework, it introduces significant theoretical and numerical challenges. Specifically, the

resulting problems are inherently non-convex and degenerate, often violating classical constraint

qualifications required for NLP [16]. Consequently, specialized techniques must be developed to

ensure both theoretical rigor and computational tractability.

b) Greedy methods. In contrast, greedy approaches are capable of directly handling the ℓ0-norm,

with their development rooted in the field of compressed sensing. For problems involving only

a single sparsity constraint set, a wide range of algorithms have developed, including first-order

methods using gradient information [12, 11, 54, 44, 10]), as well as Newton-type algorithms that

leverage second-order information [3, 58, 59, 62, 56, 61, 53]. However, compared to the case with a

single sparsity constraint, research on problems involving additional constraints remains relatively

limited. Existing studies mainly focus on scenarios with relatively simple constraint sets, such

as the simplex set [38], non-negative constraints [45], box constraints [19], affine sets [5, 34], and

symmetric sets [7, 41, 39], with algorithms typically based on gradient projection techniques. For

problems involving more complex nonlinear equality or inequality constraints, only a few works have

been reported. For example, the authors in [42] introduced a block coordinate descent algorithm

using a penalty decomposition technique to handle such cases. Moreover, for problems involving

semi-continuous variables and additional closed convex set constraints, [4] proposed an augmented

Lagrangian algorithm again based on the penalty decomposition.

It is worth mentioning that most existing algorithms fall under the category of first-order methods.

Although these methods are structurally simple and easy to implement, they often fail to achieve

high solution accuracy and computational efficiency compared to Newton-type methods. In a

recent study [60], an efficient Lagrange-Newton algorithm (LNA) was proposed for sparse NLP with

additional equality constraints. The method can be viewed as a generalization of NHTP [62] using

Newton’s method to solve the stationary equations. It has been demonstrated that both algorithms

achieve fast locally quadratic convergence rate under certain conditions. Despite the scarcity of
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Newton-type algorithms in constrained sparse optimization, the impressive computational efficiency

of LNA and the well-established semi-smooth Newton methods for solving the Karush-Kuhn-Tucker

(KKT) system in traditional NLP [25, 28, 31, 47] suggest the potential to develop an efficient

second-order algorithm for (SQCQP), which motivates the research of this paper.

1.2 Contribution

The primary contribution of this paper lies in both the theoretical analysis and the development

of a Newton-type algorithm for solving problem (SQCQP). To the best of our knowledge, this is

the first work to propose a direct numerical algorithm for this problem rather than relying on its

reformulations. Our contributions can be summarized as follows.

A. Optimality analysis via P-stationarity. We introduce the concepts of KKT points and P-

stationary points to establish the first- and second-order optimality conditions for problem (SQCQP),

clarifying their connections to local minimizers. By leveraging the properties of the sparse projection

operator and a nonlinear complementarity problem (NCP) function, we equivalently reformulate

the P-stationarity condition as a system of stationary equations. This reformulation provides a

crucial theoretical foundation for the development of a Newton-type method. However, besides the

solution variables, these equations also include an unknown discrete index set that needs to be de-

termined simultaneously. Consequently, solving these equations differs from the standard nonlinear

equation by employing the semismooth Newton-type methods.

B. A semismooth Newton-type method with locally quadratic convergence. It is important to note

that, in addition to the solution variables, the stationary equations also involve an unknown discrete

index set that must be determined simultaneously. As a result, solving these equations differs from

solving standard nonlinear equations using a Newton-type method. Nevertheless, we successfully

address this challenge by developing a semismooth Newton-type method, SNSQP. The novel design

ensures that each iteration produces an s-sparse solution xℓ, namely, ∥xℓ∥0 ≤ s. Consequently,

although a system of linear equations must be solved at each step, the algorithm maintains a

remarkably low computational complexity, enabling efficient large-scale computation. Furthermore,

we establish the nonsingularity of the generalized Jacobian of the stationary equations under mild

assumptions, which guarantees a locally quadratic convergence rate of the proposed algorithm.

C. High numerical performance. We conduct extensive numerical experiments on various applica-

tions using both synthetic and real-world datasets. Comparative evaluations against state-of-the-

art algorithms and commercial solvers, such as CPLEX and GUROBI, demonstrate that SNSQP

achieves superior computational efficiency and solution accuracy, highlighting its strong potential

for a variety of large-scale applications.

1.3 Organization

The paper is organized as follows. The next subsection introduces key notation used throughout

the paper. Section 2 examines the optimality conditions of problem (SQCQP) by presenting KKT

points and P-stationary points, then reformulates a P-stationary point as a system of stationary

equations. Section 3 analyzes the nonsingularity of the generalized Jacobian matrix associated with

these equations. In Section 4, we propose a semi-smooth Newton method for solving the stationary

equations and establish its locally quadratic convergence. Section 5 presents extensive numerical
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Notation Description

[n] := {1, 2, . . . , n}.
|t| The absolute value of scalar t.

|T | The cardinality of set T ⊆ [n].

T The complementary set of T , namely, T = [n] \ T .
x(i) The ith largest (in absolute value) entry of vector x.

∥x∥ The Euclidean norm of vector x.

∥x∥∞ The ℓ∞-norm of vector x.

supp(x) := {i ∈ [n] : xi ̸= 0}, the support set of vector x.

⟨w,x⟩ The inner product of two vectors w and x, i.e., ⟨w,x⟩ = w⊤x =
∑
wixi.

(w;x) The vector formed by stacking w and x, i.e., (w;x) = (w⊤ x⊤)⊤.

Js(x) := {J ⊆ [n] : |J | = s, J ⊇ supp(x)}.
xT The subvector of x containing elements indexed by T .

AIJ The submatrix of A ∈ Rm×n whose rows and columns are indexed by I and J .

In particular, A:T := A[m]T and AT : := AT [n].

XJ := ×i∈JXi, e.g., X{1,3,4} = X1 ×X3 ×X4.

ei The i-th column of identity matrix I.

bd(Ω) The boundary of set Ω.

int(Ω) The interior of set Ω.

Table 1: A list of notation.

experiments, followed by conclusions in the final section.

1.4 Notation

We end this section by introducing some notation to be used throughout the paper, with most of

them summarized in Table 1. In addition, we denote

fi(x) :=
1

2
x⊤Qix+ q⊤

i x+ ci, i = 0, 1, 2, . . . , k,

F := {x ∈ Rn : fi (x) ≤ 0, i = 1, 2, . . . , k, Ax− b ≤ 0},

S := {x ∈ Rn : ∥x∥0 ≤ s},

(1.1)

where S is known as the sparse set. Let ΠΩ(x) be the projection of x onto set Ω, namely,

ΠΩ(x) = argminz∈Ω ∥z− x∥2.

Therefore, ΠS(x) keeps the first s largest (in absolute value) entries of x and sets the remaining to

be zeros. Let TΩ(x), NΩ(x), and N̂Ω(x) be the Clarke tangent cone, Clarke/limiting normal cone,

and Fréchet normal cone of x at Ω, respectively. One can refer to [48] for their definitions. It is

easy to calculate that

T[a,b](x) =


[0,+∞), if x = a,

R, if x ∈ (a, b),

(−∞, 0], if x = b,

N[a,b](x) ∈


(−∞, 0], if x = a,

{0}, if x ∈ (a, b),

[0,+∞), if x = b.

(1.2)

4



Moreover, by [46, Theorem 2.1], we have

N̂S(x) =

Rn
Γ
:= {x ∈ Rn : xΓ = 0} , if ∥x∥0 = s,

{0}, if ∥x∥0 < s.
(1.3)

Let f : Rn → Rm be a locally Lipschitz continuous function. Then f is differentiable almost

everywhere by Rademacher’s Theorem. By denotingDf as the set of points where f is differentiable,

the Clarke generalized Jacobian [23] of f at x ∈ Rn is defined as

∂f(x) = co
{
limxℓ∈Df ,xℓ→x∇f(xℓ)

}
,

where co(Ω) represents the convex hull of Ω. Let U ⊆ Rn be an open set and f : U → Rm be a

locally Lipschitz continuous function. We say that f is semismooth at x ∈ U if it is directionally

differentiable at x, and for every ∆x → 0 and H ∈ ∂f(x+∆x) it satisfies

f(x+∆x)− f(x)−H∆x = o(∥∆x∥).

Furthermore, if the above equation is replaced by

f(x+∆x)− f(x)−H△x = O
(
∥∆x∥2

)
,

then f is said to be strongly semismooth at x. Finally, Fischer-Burmeister (FB) function [31]

ϕ : R× R → R is defined by

ϕ(a, b) :=
√
a2 + b2 − a− b.

It is well-known that the FB function is a nonlinear complementarity problem (NCP) function that

satisfies ϕ (a, b) = 0 if and only if a ≥ 0, b ≥ 0, and ab = 0.

2 Optimality Analysis

In this section, we analyze the optimality conditions of (SQCQP) by introducing P-stationarity,

which is then equivalently formulated as stationary equations using the sparse projection operator

and the FB function. This serves as a fundamental theoretical basis for algorithm design.

2.1 First-order optimality conditions

The Lagrangian function of (SQCQP) is,

L (x,µ,λ) := f0 (x) +
k∑

i=1

µifi (x) + ⟨λ,Ax− b⟩, (2.1)

where µ ∈ Rk and λ ∈ Rm are Lagrange multipliers. Given point (x∗,µ∗,λ∗) ∈ Rn × Rk × Rm,

hereafter, we always denote

g∗ := ∇xL (x∗,µ∗,λ∗) , H∗ := ∇2
xxL (x∗,µ∗,λ∗) , Γ∗ := supp(x∗), X∗ := XΓ∗ .

Definition 2.1 (KKT Points). We call x∗ a KKT point of (SQCQP) if there is (ν∗,µ∗,λ∗) ∈
Rn × Rk × Rm such that,

−g∗ − ν∗ ∈ N̂S (x
∗) ,

ν∗
Γ∗

∈ NX∗(x
∗
Γ∗
), ν∗

Γ∗
= 0, x∗

Γ∗
∈ XΓ∗ ,

fi (x
∗) ≤ 0, µ∗i ≥ 0, µ∗i fi (x

∗) = 0, i ∈ [k],

Ax∗ − b ≤ 0, λ∗ ≥ 0, ⟨λ∗,Ax∗ − b⟩ = 0.

(2.2)
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To derive the relationship between a KKT point and a local minimizer of (SQCQP), we need the

following restricted linear independent constraint qualification (LICQ) condition.

Assumption 2.1 (Restricted LICQ). Let x∗ ∈ F ∩ S ∩ X and

A1 (x
∗) := {i ∈ [k] : fi (x

∗) = 0} , (2.3)

A2 (x
∗) := {i ∈ [m] : ⟨ai,x∗⟩ = bi} , (2.4)

A3 (x
∗;T ) := {i ∈ T : x∗i ∈ bd (Xi)} . (2.5)

Assume the following groups of vectors are linearly independent for any T ∈ Js(x∗),{
(∇fi(x∗))Γ∗ : i ∈ A1 (x

∗)
}
∪
{
(ai)Γ∗

: i ∈ A2 (x
∗)
}
∪
{
(ei)Γ∗

: i ∈ A3 (x
∗;T )

}
.

Theorem 2.1. Let x∗ be a local minimizer of (SQCQP) and Assumption 2.1 hold at x∗. Then

there is a unique (ν∗,µ∗,λ∗) ∈ Rn × Rk × Rm such that x∗ is a KKT point of (SQCQP).

Proof. As x∗ is a local minimizer of (SQCQP), it is also a local minimizer of the problem,

min f0(x), s.t. x ∈ F, xT = 0, xT ∈ XT , (2.6)

for any T ∈ Js(x∗). By Γ∗ ⊆ T , Assumption 2.1 indicates that{
(∇fi(x∗))T : i ∈ A1 (x

∗)
}
∪
{
(ai)T : i ∈ A2 (x

∗)
}
∪
{
(ei)T : i ∈ A3 (x

∗;T )
}

are linearly independent, namely, the LICQ holds at x∗ for (2.6). Then by [55, Theorem 1], there

exist a unique (ν,µ,λ,γ) ∈ Rn × Rk × Rm × Rn−s, such that

∇xL (x∗,µ,λ) + ν +
∑

i∈T γiei = 0,

νT ∈ NXT
(x∗

T ) , νT = 0, x∗
T ∈ XT ,

fi (x
∗) ≤ 0, µi ≥ 0, µifi (x

∗) = 0, i ∈ [k],

Ax∗ − b ≤ 0, λ ≥ 0, ⟨λ,Ax∗ − b⟩ = 0.

(2.7)

If ∥x∗∥0 = s, then Js(x∗) = {Γ∗} and thus T = Γ∗. By letting (ν∗,µ∗,λ∗) = (ν,µ,λ), we obtain

−g∗ − ν∗ =
∑

i∈Γ∗
γiei ∈ Rn

Γ∗
= N̂S(x

∗) from (1.3) and ν∗
Γ∗

= 0.

If ∥x∗∥0 < s, then for any T ∈ Js(x∗), rewrite the first row in (2.7) as follows
[∇xL (x∗,µ,λ) + ν]Γ∗

= 0,

[∇xL (x∗,µ,λ) + ν]T\Γ∗
= 0,[

∇xL (x∗,µ,λ) + ν +
∑

i∈T γiei
]
T
= 0.

(2.8)

Assumption 2.1 indicates the uniqueness of (µ,λ,ν) from the first equation of (2.7). Therefore, we

let (ν∗,µ∗,λ∗) = (ν,µ,λ). Since ∪T∈J(x∗)(T\Γ∗) = Γ∗, it follows from the second row of (2.8) that

(g∗ + ν)Γ∗
= 0. This together with the first row of (2.8) show g∗ + ν∗ = 0 ∈ N̂S(x

∗) from (1.3).

Furthermore, ν∗
T
= 0 for any T ∈ Js(x∗) suffices to ν∗

Γ∗
= 0.

Therefore, both cases lead to the first condition in (2.2) and ν∗
Γ∗

= 0. Then the other conditions in

(2.2) can be ensured by (2.7) with (ν,µ,λ) = (ν∗,µ∗,λ∗).
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According to Theorem 2.1, a KKT point is closely related to a local minimizer of (SQCQP).

However, computing it directly is intractable. To address this, we introduce an alternative point

that can be efficiently obtained through a well-designed numerical algorithm. This point is defined

based on the projection onto sparse set S, which is why we refer to it as a P -stationary point, where

P represents the projection.

Definition 2.2. We call x∗ ∈ Rn a P -stationary point of (SQCQP) associated with a constant

τ > 0 if there is (ν∗,µ∗,λ∗) ∈ Rn × Rk × Rm such that,

x∗ = ΠS (x
∗ − τ(g∗ + ν∗)) ,

x∗
Γ∗

= ΠX∗(x
∗
Γ∗

+ ν∗
Γ∗
), ν∗

Γ∗
= 0,

fi (x
∗) ≤ 0, µ∗i ≥ 0, µ∗i fi (x

∗) = 0, i ∈ [k],

Ax∗ − b ≤ 0, λ∗ ≥ 0, ⟨λ∗,Ax∗ − b⟩ = 0.

(2.9)

One can easily observe that a P -stationary point must be a KKT-point because the fixed point

equation based on the projection operator can lead to the condition characterized by the normal

cones. Using the FB function, the two complementary conditions in (2.9) can be written as

φ (x,µ) :=


ϕ (−f1 (x) , µ1)

...

ϕ (−fk (x) , µk)

 = 0, ψ (x,λ) :=


ϕ (b1 − ⟨a1,x⟩, λ1)

...

ϕ (bm − ⟨am,x⟩, λm)

 = 0.

Based the above functions and the expression [6, Lemma 2.2] of ΠS(·), x∗ is P -stationary point if

and only if x∗ ∈ S and

g∗
Γ∗

+ ν∗
Γ∗

= 0, τ∥g∗
Γ∗
∥∞ < x∗(s), if ∥x∗∥0 = s,

g∗
Γ∗

+ ν∗
Γ∗

= 0, g∗
Γ∗

= 0, if ∥x∗∥0 < s,

x∗
Γ∗

= ΠX∗(x
∗
Γ∗

+ ν∗
Γ∗
), ν∗

Γ∗
= 0,

φ (x∗,µ∗) = 0, ψ (x∗,λ∗) = 0,

(2.10)

which further results in the following optimality conditions for (SQCQP).

Theorem 2.2 (First-order necessary condition). Let x∗ be a local minimizer of (SQCQP) and

Assumption 2.1 hold at x∗. Then there is a unique (ν∗,µ∗,λ∗) ∈ Rn × Rk × Rm such that x∗ is a

P -stationary point of (SQCQP) for any τ ∈ (0, τ), where

τ̄ :=


x∗
(s)∥∥∥g∗

Γ∗

∥∥∥
∞

, if ∥x∗∥0 = s,

+∞, if ∥x∗∥0 < s.

(2.11)

Proof. Theorem 2.1 states that there is a unique (ν∗,µ∗,λ∗) such that x∗ is a KKT point of

(SQCQP), which by the first condition and ν∗
Γ∗

= 0 in (2.2) indicatesg∗
Γ∗

+ ν∗
Γ∗

= 0, if ∥x∗∥0 = s,

g∗
Γ∗

+ ν∗
Γ∗

= 0, g∗
Γ∗

= 0, if ∥x∗∥0 < s,
(2.12)

The value of τ̄ means that for any τ ∈ (0, τ̄), we have τ |g∗i | < x∗(s) for all i ∈ Γ∗ when ∥x∗∥0 = s.

By (2.10), we can conclude that x∗ is a P -stationary point of (SQCQP) for any τ ∈ (0, τ̄).
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Theorem 2.3 (First-order sufficient condition). Suppose that Q0,Q1 . . . ,Qk are positive semi-

definite. Then a P -stationary point of (SQCQP) is a local minimizer if ∥x∗∥0 = s and a global

minimizer if ∥x∗∥0 < s.

Proof. Let x∗ is a P -stationary point of (SQCQP). Then x∗ is a KKT point and hence there is

(ν∗,µ∗,λ∗) such that (2.10) and (2.2). Note that ν∗
Γ∗

∈ NX∗(x
∗
Γ∗
), it follows ⟨ν∗

Γ∗
,xΓ∗ − x∗

Γ∗
⟩ ≤ 0

for any x ∈ F ∩ S ∩ X. If ||x∗||0 < s, then g∗
Γ∗

= −ν∗
Γ∗

and g∗
Γ∗

= 0 by (2.10), yielding that

⟨g∗,x− x∗⟩ = ⟨g∗
Γ∗ ,xΓ∗ − x∗

Γ∗⟩ = ⟨−ν∗
Γ∗ ,xΓ∗ − x∗

Γ∗⟩ ≥ 0, (2.13)

Additionally, since {Q0,Q1 . . . ,Qk} are positive semi-definite, L (·,µ∗,λ∗) is convex, thereby

f0(x) ≥ L (x,µ∗,λ∗) ≥ L (x∗,µ∗,λ∗) + ⟨g∗,x− x∗⟩ ≥ f0(x
∗), (2.14)

for any x ∈ F ∩ S ∩ X, which means that x∗ is a global minimizer of (SQCQP).

If ||x∗||0 = s, then there is a sufficiently small neighborhood N∗ of x∗ such that supp(x) = Γ∗ for any

x ∈ N∗ ∩ (F ∩ S ∩X), and hence (x− x∗)Γ∗
= 0. This indicates condition (2.13) is also true, which

by the convexity of L (·,µ∗,λ∗) implies that condition (2.14) holds for any x ∈ N∗ ∩ (F ∩ S ∩ X).
Hence, x∗ is a local minimizer of (SQCQP).

Based on Theorem 2.1, Theorem 2.2 and Theorem 2.3, we build the following relationships among

the P -stationary points, KKT points and local minimizers,

P -stationary points −−−−⇀↽−−−−
τ∈(0,τ̃)

KKT points
Qi⪰0

−−−−⇀↽−−−−
Assumption 2.1

Local minimizers (2.15)

where Qi ⪰ 0 means Qi is a symmetric positive semidefinite matrix.

2.2 Stationary equations

Hereafter, we denote some notation for simplicity. Given x ∈ S and a constant τ > 0, let

u := x− τ (∇xL(x,µ,λ) + ν) ,

Y := (x,ν,µ,λ) ∈ Rn × Rn × Rk × Rm,

which allows us to define a useful set by

Tτ (Y) :=
{
T ⊆ [n] : |T | = s, |ui| ≥ |uj |, ∀i ∈ T, ∀j ∈ T

}
, (2.16)

where ui is the ith entry of u. One can observe that any T ∈ Tτ (Y) consists of s indices of the first

s largest (in absolute value) entries of u. Finally, given Y and an index set T , we define a system

of equations as follows,

F (Y;T ) :=



(∇xL (x,µ,λ) + ν)T

xT

xT −ΠXT
(xT + νT )

νT
φ (x,µ)

ψ (x,λ)


. (2.17)

This equation enables the further exploration of condition (2.9), as outlined below.
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Theorem 2.4 (Stationary Equations). Point x∗ is a P -stationary point of (SQCQP) with τ > 0

if and only if there is (ν∗,µ∗,λ∗) ∈ Rn × Rk × Rm such that

F (Y∗;T ) = 0, ∀ T ∈ Tτ (Y
∗). (2.18)

Furthermore,

Tτ (Y
∗) ≡ Js(x∗). (2.19)

Proof. By comparing (2.10) and (2.18), we need to show that

x∗ = ΠS (x
∗ − τ(g∗ + ν∗)) ⇐⇒ (g∗ + ν∗)T = 0, x∗

T
= 0, ∀ T ∈ Tτ (Y

∗), (2.20)

and the following relation, [
x∗
Γ∗

−ΠX∗

(
x∗
Γ∗

+ ν∗
Γ∗

)
ν∗
Γ∗

]
= 0, ∀ T ∈ Tτ (Y

∗)

⇐⇒

[
x∗
T −ΠXT

(x∗
T + ν∗

T )

ν∗
T

]
= 0, ∀ T ∈ Tτ (Y

∗). (2.21)

Equivalence (2.20) follows from [62, Lemma 4] immediately. Thus, condition (2.19) follows from

[60, Theorem 3] and (2.20). Based on this relation and x∗
T
= 0, we can conclude that

Γ∗ ⊆ T, ∀ T ∈ Tτ (Y
∗). (2.22)

We prove (2.21) by considering two cases. When ∥x∗∥0 = s, it has T = Γ∗ due to (2.22) and

|T | = s, which immediately shows (2.21). When ∥x∗∥0 < s, it follows from (2.22) that Γ∗ ⊇ T for

any T ∈ Tτ (Y
∗), which means that ν∗

Γ∗
= 0 suffices to ν∗

T
= 0 and

x∗
T\Γ∗

−ΠXT\Γ∗

(
x∗
T\Γ∗

+ ν∗
T\Γ∗

)
= 0−ΠXT\Γ∗

(0 + 0) = 0,

showing inclusion ‘ =⇒′. From (2.21) and (2.19), ν∗
T
= 0 for any T ∈ Tτ (Y

∗) = Js(x∗), which

contributes to 0 = ∪T∈Js(x∗)ν
∗
T
= ν∗

Γ∗
. Consequently, ‘ ⇐=′ follows due to Γ∗ ⊆ T .

The motivation for deriving the above theorem stems from numerical algorithm design. Although

an unknown index set T is involved, the core of condition (2.18) is a system of equations, which

makes a Newton-type method feasible.

2.3 Second-order optimality conditions

To end this section, we establish second-order optimality conditions for (SQCQP). For convenience,

given Y∗ := (x∗,ν∗,µ∗,λ∗), we define the following index sets,

η1 := {i ∈ [k] : µ∗i = 0, fi(x
∗) < 0} , η2 := {i ∈ [m] : λ∗i = 0, ⟨ai,x∗⟩ < bi} ,

θ1 := {i ∈ [k] : µ∗i = 0, fi(x
∗) = 0} , θ2 := {i ∈ [m] : λ∗i = 0, ⟨ai,x∗⟩ = bi} ,

β1 := {i ∈ [k] : µ∗i > 0, fi(x
∗) = 0} , β2 := {i ∈ [m] : λ∗i > 0, ⟨ai,x∗⟩ = bi} .

(2.23)

In addition, for a given index set T ∈ Tτ (Y
∗), let

η3(T ) := {i ∈ T : ν∗i = 0, x∗i ∈ int(Xi)} , η3 := η3(Γ∗),

θ3(T ) := {i ∈ T : ν∗i = 0, x∗i ∈ bd(Xi)} , θ3 := θ3(Γ∗),

β3(T ) := {i ∈ T : ν∗i ̸= 0, x∗i ∈ bd(Xi)} , β3 := β3(Γ∗).

(2.24)
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Based on these sets, the critical cone for (SQCQP) is defined by

C (Y∗) :=

d ∈ Rn :

⟨∇fi(x∗),d⟩ ≤ 0, i ∈ θ1, ⟨∇fi(x∗),d⟩ = 0, i ∈ β1

⟨ai,d⟩ ≤ 0, i ∈ θ2, ⟨ai,d⟩ = 0, i ∈ β2

di ∈ TXi(x
∗
i ), i ∈ θ3, di = 0, i ∈ β3

 .

Theorem 2.5 (Second-order necessary condition). Let x∗ be a local minimizer of (SQCQP)

and Assumption 2.1 hold at x∗. Then there is unique (ν∗,µ∗,λ∗) ∈ Rn × Rk × Rm such that

⟨d,H∗d⟩ ≥ 0, ∀ d ∈ C (Y∗) ∩ Rn
Γ∗ .

Proof. As x∗ is a local minimizer of (SQCQP), it is also a local minimizer of

min f0(x), s.t. x ∈ F, xΓ∗
= 0, xΓ∗ ∈ X∗.

Then the conclusion follows from Assumption 2.1 and [48, Example 13.25] immediately.

Theorem 2.6 (Second-order sufficient condition). Let x∗ be a P-stationary point of (SQCQP),

namely, there is (ν∗,µ∗,λ∗) ∈ Rn × Rk × Rm satisfying (2.9). Suppose that

⟨d,H∗d⟩ > 0, ∀ d( ̸= 0) ∈

C (Y∗) ∩ Rn
Γ∗
, if ∥x∗∥0 = s,

C (Y∗) , if ∥x∗∥0 < s.
(2.25)

Then x∗ is a strictly local minimizer of (SQCQP).

Proof. We argue by contradiction. Suppose that x∗ is not a strictly local minimizer of (SQCQP).

Then there is a sequence
{
xℓ
}
⊂ (F ∩ S ∩ X)\ {x∗} satisfying xℓ → x∗ and

f0(x
ℓ) ≤ f0 (x

∗) , ℓ = 1, 2, 3, . . . (2.26)

Let dℓ := (xℓ − x∗)/∥xℓ − x∗∥. Then ∥dℓ∥ = 1 and thus there as a convergent subsequence of {dℓ}
whose limit point d satisfies ∥d∥ = 1. Without loss of generality, we assume that sequence {dℓ}
itself converges to d. It is obvious that dΓ∗

= 0 when ∥x∗∥0 = s since supp(xℓ) = Γ∗ when xℓ is

sufficiently close to x∗. By (2.26),

0 ≥ f0(x
ℓ)− f0(x

∗) = ⟨∇f0 (x∗) ,xℓ − x∗⟩+ o(∥xℓ − x∗∥).

Dividing the both sides of the above inequality by ∥xℓ − x∗∥ and letting ℓ→ ∞, we have

⟨∇f0 (x∗) ,d⟩ ≤ 0. (2.27)

We note that a P-stationary point is also a KKT point, so ν∗
Γ∗

∈ NX∗(x
∗
Γ∗
) by (2.2), leading to

⟨ν∗
Γ∗
,xℓ

Γ∗
−x∗

Γ∗
⟩ ≤ 0 and hence ⟨ν∗

Γ∗
,dΓ∗⟩ = limℓ→∞⟨ν∗

Γ∗
,dℓ

Γ∗
⟩ ≤ 0. This indicates dΓ∗ ∈ TX∗

(
x∗
Γ∗

)
and thus ⟨ν∗

Γ∗
,dΓ∗⟩ ≤ 0 . By the definitions of (θ1, β1, θ2, β2) and

{
xℓ
}
⊂ F ∩ S ∩ X, it follows

fi(x
ℓ)− fi(x

∗) = fi(x
ℓ) ≤ 0, ∀ i ∈ θ1 ∪ β1,

⟨ai,xℓ − x∗⟩ = ⟨ai,xℓ⟩ − bi − (⟨ai,x∗⟩ − bi) ≤ 0, ∀ i ∈ θ2 ∪ β2.
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Based on these, the similar reasoning to show (2.27) enables us to derive that
⟨∇fi (x∗) ,d⟩ ≤ 0, i ∈ θ1 ∪ β1,

⟨ai,d⟩ ≤ 0, i ∈ θ2 ∪ β2,

di ∈ TXi (x
∗
i ) , i ∈ θ3 ∪ β3.

(2.28)

Next, we further assert that 
⟨∇fi (x∗) ,d⟩ = 0, i ∈ β1,

⟨ai,d⟩ = 0, i ∈ β2,

di = 0, i ∈ β3.

(2.29)

Suppose there is an i0 ∈ β1 such that ⟨∇fi0 (x∗) ,d⟩ < 0. Then we have

0 = ⟨∇xL (x∗,µ∗,λ∗) + ν∗,d⟩

= ⟨∇f0 (x∗) ,d⟩+
∑
i∈β1

µ∗i ⟨∇fi (x∗) ,d⟩+
∑
i∈β2

λ∗i ⟨ai,d⟩+
∑
i∈β3

ν∗i di

≤ ⟨∇f0 (x∗) ,d⟩+ µ∗i0 ⟨∇fi0 (x
∗) ,d⟩

< ⟨∇f0 (x∗) ,d⟩ ≤ 0,

where the first equality is from (2.10) by the P-stationarity of x∗ and dΓ∗
= 0 if ∥x∗∥0 = s, the

second equality and the first inequality are from (2.23), and the last inequality is from (2.27). This

contradiction shows the first equation in (2.29). Then the same reasoning enables the last two

equations in (2.29). Combining (2.28), (2.29), and dΓ∗
= 0 when ∥x∗∥0 = s, we conclude that

d(̸= 0) ∈

C (Y∗) ∩ Rn
Γ∗
, if ∥x∗∥0 = s,

C (Y∗) , if ∥x∗∥0 < s.
(2.30)

Additionally, it follows from (2.23) and (2.26) that

L(xℓ,µ∗,λ∗) = f0(x
ℓ) +

∑
i∈β1

µ∗i fi(x
ℓ) +

∑
i∈β2

λ∗i (⟨ai,x∗⟩ − bi) ≤ f0 (x
∗) = L (x∗,µ∗,λ∗) . (2.31)

We note that supp(xℓ) = Γ∗ when ∥x∗∥0 = s and g∗
Γ∗

= 0 by (2.10) when ∥x∗∥0 < s. Then the

similar reasoning to show (2.13) can show ⟨g∗,xℓ − x∗⟩ ≥ 0. This together with (2.31) result in

0 ≥ 2L(xℓ,µ∗,λ∗)− 2L(x∗,µ∗,λ∗)

= ⟨xℓ − x∗,H∗(xℓ − x∗)⟩+ 2⟨g∗,xℓ − x∗⟩

≥ ⟨xℓ − x∗,H∗(xℓ − x∗).

Dividing the both sides of the above inequality by ∥xℓ − x∗∥2 and letting ℓ→ ∞, we have

⟨d,H∗d⟩ ≤ 0,

for any d satisfying (2.30), which contradicts to (2.25). The proof is completed.
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3 Nonsingularity of Generalized Jacobian

In this section, we aim to analyze the nonsingularity of the generalized Jacobian matrix ∂F of

stationary equations (2.18). Given Y∗ = (x∗,ν∗,µ∗,λ∗) ∈ Rp with p := 2n + k + m, we select

one index set T ∈ Tτ (Y
∗). One can verify that F (·;T ) is strongly semismooth at Y∗ and any

generalized Jacobian matrix W ∈ ∂F (Y∗;T ) takes the form of

W :=



H∗
TT H∗

TT
B∗

T : A⊤
:T I 0

0 I 0 0 0 0

I−C∗ 0 0 0 −C∗ 0

0 0 0 0 0 I

U∗
1(B

∗
T :)

⊤ U∗
1(B

∗
T :
)⊤ V∗

1 0 0 0

U∗
2A:T U∗

2A:T 0 V∗
2 0 0


∈ Rp×p. (3.1)

The sub-matrices in (3.1) are defined by

B∗ :=
[
∇f1(x∗) · · · ∇fk(x∗)

]
∈ Rn×k,

C∗ := Diag (c) ∈ ∂
(
ΠXT

(x∗
T + ν∗

T )
)
∈ Rs×s,

U∗
i := Diag

(
ut
)
∈ Rk×k,

V∗
i := Diag

(
vt
)
∈ Rm×m, i = 1, 2,

(3.2)

where Diag(u) is a diagonal matrix with diagonal entries formed by u, and for t = 1, 2,

(
uti, v

t
i

)

= (0,−1) , if i ∈ ηt,

∈
{
(α, β) : ∥(α, β)− (1,−1)∥2 ≤ 1

}
, if i ∈ θt,

= (1, 0) , if i ∈ βt,

ci


= 1, if i ∈ η3(T ),

∈ [0, 1], if i ∈ θ3(T ),

= 0, if i ∈ β3(T ).

(3.3)

After simple elementary operations, we can get the following reduced matrix

G :=


H∗

TT B∗
T : A⊤

:T I

I−C∗ 0 0 −C∗

U∗
1(B

∗
T :)

⊤ V∗
1 0 0

U∗
2A:T 0 V∗

2 0

 ∈ Rq×q, (3.4)

where q := 2s+k+m, which has the same nonsingularity asW in (3.1). Based on these notation, we

establish the CD-regularity of F (Y∗;T ) for any given T as follows. We say F (Y∗;T ) is CD-regular

if any W ∈ ∂F (Y∗;T ) is nonsingular.

Theorem 3.1 (CD-regularity). Let x∗ be a P -stationary point of (SQCQP) with τ > 0. Then

for any given T ∈ Tτ (Y
∗), F (Y∗;T ) is CD-regular if Assumption 2.1 holds at Y∗ and

⟨d,H∗d⟩ > 0,∀0 ̸= d ∈ Q (Y∗;T ) , (3.5)

where Q is a cone defined by

Q (Y∗;T ) :=

d ∈ Rn :

⟨∇fi(x∗),d⟩ = 0, i ∈ β1

⟨ai,d⟩ = 0, i ∈ β2

di = 0, i ∈ β3(T )

 .
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Proof. Given any T ∈ Tτ (Y
∗), to show the nonsingularity of W ∈ ∂F (Y∗;T ) is equivalent to show

that the following homogeneous system has a unique solution 0,

W
(
dx; dν ; dµ; dλ

)
= 0.

This condition is equivalent to 
0 = dx

T
,

0 = dν
T
,

0 = G
(
dx
T ; dν

T ; dµ; dλ
)
,

(3.6)

which by (3.4), we get 

0 = H∗
TTd

x
T + dν

T +B∗
T :d

µ +A⊤
:Td

λ,

0 = (I−C∗)dx
T −C∗dν

T ,

0 = U∗
1(B

∗
T :)

⊤dx
T +V∗

1d
µ,

0 = U∗
2A:Td

x
T +V∗

2d
λ.

(3.7)

Since Y∗ satisfies (2.9) and (3.3), we have

ηt = {i :
(
uti, v

t
i

)
= (0,−1)}, η3(T ) = {i ∈ T : ci = 1},

θt = {i :
∥∥(uti, vti)− (1,−1)

∥∥2 ≤ 1}, θ3(T ) = {i ∈ T : ci ∈ [0, 1]},

βt = {i :
(
uti, v

t
i

)
= (1, 0)}, β3(T ) = {i ∈ T : ci = 0},

where t = 1, 2. Based on these indices, we further define

η̃t := {i ∈ θt :
(
uti, v

t
i

)
= (0,−1)} ∪ ηt, η̃3 := {i ∈ θ3(T ) : ci = 1} ∪ η3(T ),

θ̃t := {i :
∥∥(uti, vti)− (1,−1)

∥∥2 < 1}, θ̃3 := {i ∈ θ3(T ) : ci ∈ (0, 1)},

β̃t := {i ∈ θ:
(
uti, v

t
i

)
= (1, 0)} ∪ βt, β̃3 := {i ∈ θ3(T ) : ci = 0} ∪ β3(T ).

One can observe that uti > 0 and vti < 0 for any i ∈ θ̃t, t = 1, 2. These and the last three equations

in (3.7) lead to the facts in Table 2,

Table 2: Conditions on (η̃t, θ̃t, β̃t), t = 1, 2, 3.

i ∈ η̃t i ∈ θ̃t i ∈ β̃t

t = 1 dµi = 0 ((B∗
T :)

⊤dx
T )i = −(v1i /u

1
i )d

µ
i ⟨(∇fi(x∗))T ,d

x
T ⟩ = 0

t = 2 dλi = 0 ⟨(ai)T ,dx
T ⟩ = −(v2i /u

2
i )d

λ
i ⟨(ai)T , dx

T ⟩ = 0

t = 3 i ∈ T, dνi = 0 i ∈ T, dxi = cid
ν
j /(1− ci) dxi = 0

The conditions in the third column of Table 2, βt ⊆ β̃t, t = 1, 2, and β3(T ) ⊆ β̃3 yield that

dx ∈ Q (Y∗;T ) . (3.8)

Multiplying the both sides of the first equation in (3.7) by dx
T derives

⟨dx
T ,H

∗
TTd

x
T ⟩+

∑
i∈T∩θ̃3

ci(d
ν
j )

2

1− ci
−

∑
i∈θ̃1

v1i (d
µ
i )

2

u1i
−

∑
i∈θ̃2

v2i (d
λ
i )

2

u2i
= 0. (3.9)
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which together with (3.5) and (3.8) immediately results in(
dx
T , d

ν
T∩θ̃3 , d

µ

θ̃1
, dλ

θ̃2

)
= (0, 0, 0, 0).

This recalling the first column of Table 2 further derives(
dν
T∩(η̃3∪θ̃3), d

µ

η̃1∪θ̃1
, dλ

η̃2∪θ̃2

)
= (0, 0, 0).

By inserting these values into the first equation in (3.7), it holds that

I
T (T∩β̃3)

dν
(T∩β̃3)

+B∗
T β̃1d

µ

β̃1
+A⊤

β̃2T
dλ
β̃2 = 0. (3.10)

One can check that β̃1 ⊆ A1(x
∗), β̃2 ⊆ A2(x

∗), T ∩ β̃3 ⊆ A3(x
∗;T ), and Γ∗ ⊆ T for any T ∈ Js(x∗).

Hence, Assumption 2.1 indicates the following groups of vectors are linearly independent,{
(∇fi(x∗))T : i ∈ β̃1

}
∪
{
(ai)T : i ∈ β̃2

}
∪
{
(ei)T : i ∈ T ∩ β̃3

}
,

which by (3.10) implies (dν
(T∩β̃3)

,dµ

β̃1
,dλ

β̃2
) = (0, 0, 0). Overall, (dx

T ,d
ν
T ,d

µ,dλ) = 0, which combin-

ing the first two conditions in (3.6) yields the conclusion.

In the sequel, we pay attention to point Y = (x,ν,µ,λ) with x ∈ S in a neighbourhood of Y∗.

Therefore, we define a set by

E := S× Rn × Rk × Rm.

Moreover, we note that each ∇fi(x) is Lipschitz continuous, so ∇xL(x,µ,λ) + ν is locally Lipschitz

continuous. Leveraging this fact, we build the following property of any Y around Y∗.

Lemma 3.1. Let x∗ be a P-stationary point of (SQCQP) with τ > 0. Then there is a neighbourhood

N∗ of Y∗ such that for any Y ∈ E ∩ N∗,

Tτ (Y) ⊆ Tτ (Y
∗) , Γ∗ ⊆ (supp(x) ∩ T ), ∀ T ∈ Tτ (Y). (3.11)

Consequently, F (Y∗;T ) = 0 for any T ∈ Tτ (Y).

Proof. Since the second claim follows from (3.11) and (2.18), we only prove (3.11). Let neighbour-

hood N∗ be a sufficiently small region. Then (3.11) is true when ∥x∗∥0 = s due to

Tτ (Y) = Tτ (Y
∗) = {Γ∗} = {supp(x)}.

Therefore, we only prove the case of ∥x∗∥0 < s. One can easily check that for any Y ∈ E ∩ N∗,

Γ∗ ⊆ supp(x), Js(x) ⊆ Js(x∗) = Tτ (Y
∗) , (3.12)

where the equality is from (2.19). If Γ∗ = ∅, the conclusion holds evidently. Now we focus on Γ∗ ̸= ∅.
This means that mini∈Γ∗ |xi| > 0 because x is close to x∗. Moreover, it follows from (2.10) that

g∗ + ν∗ = 0. As a result of the locally Lipschitz continuity, τ∥∇xL (x,µ,λ) + ν∥∞ < mini∈Γ∗ |xi|,
which indicates that

Γ∗ ∈ T, ∀ T ∈ Tτ (Y).

This recalling the definition of Js(x∗) enables us to conclude that Tτ (Y) ⊆ Js(x∗), which together

with (3.12) shows the desired result.
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Theorem 3.2. Let x∗ be a P-stationary point of (SQCQP) with τ > 0 and the assumptions in

Theorem 3.1 hold at Y∗. Then there is a neighbourhood N∗ of Y∗ such that the following statements

are valid for any Y ∈ E ∩ N∗.

1) Every W ∈ ∂F (Y;T ) is nonsingular for each given T ∈ Tτ (Y).

2) There is a constant C∗ > 0 such that∥∥W−1
∥∥ ≤ C∗, ∀ W ∈ ∂F (Y;T ), ∀T ∈ Tτ (Y). (3.13)

where ∥W∥ represents the spectral norm of W.

Proof. 1) By invoking Theorems 3.1, for each given T∗ ∈ Tτ (Y
∗), any W∗ ∈ ∂F (Y∗;T∗) is non-

singular. Consider any point Y ∈ E ∩ N∗. Lemma 3.1 means that Tτ (Y) ⊆ Tτ (Y
∗). As a result,

for each given T ∈ Tτ (Y), any W∗ ∈ ∂F (Y∗;T ) is nonsingular. We first prove that for each

given T ∈ Tτ (Y), every W ∈ ∂F (Y;T ) is nonsingular and there is a constant CT > 0 such that

∥W−1∥ ≤ CT . If this is not true, then given such T , there is a sequence Yℓ(∈ N∗) → Y∗ and

Wℓ ∈ ∂F
(
Yℓ;T

)
satisfying either all Wℓ are singular or ∥(Wℓ)−1∥ → ∞. The locally Lipschitz

continuity of F (·;T ) means ∂F (·;T ) is bounded in N∗. By passing to a subsequence, we may

assume Wℓ → W∗. Then W∗ is singular, contradicting to the nonsingularity of W∗

2) We note that there are finitely many T ∈ Tτ (Y). By setting C∗ = maxT∈Tτ (Y)CT , condition

(3.13) follows immediately.

4 A Semi-smooth Newton Algorithm

In this section, we leverage a semi-smooth Newton-type method to solve stationary equations (2.18)

for problem (SQCQP), before which we define some notation for the ease of reading. Given a point

Y = (x,ν,µ,λ) ∈ Rn × Rn × Rk × Rm and T ∈ Ts(Y), we define y and a direction d by

y :=
(
xT ; xT ; νT ; νT ; µ; λ

)
∈ Rp,

d :=
(
dx
T ; dx

T
; dν

T ; dν
T
; dµ; dλ

)
∈ Rp,

(4.1)

namely, y is a vectorization of Y. In addition, by letting

J := n+ T , K := [p] \ (T ∪ J),

one can write d = (dT ; dJ ; dK), where

dT = dx
T
∈ Rn−s, dJ = dν

T
∈ Rn−s, dK =

(
dx
T ; dν

T ; dµ; dλ
)
∈ Rq.

4.1 Algorithm design

To employ the Newton method, we need to find a solution to a system of linear equations. For

(SQCQP), given current Yℓ and Tℓ ∈ Ts(Y
ℓ) at step ℓ, we aim to find a direction dℓ by solving

stationary equations Wℓdℓ = −F (Yℓ;Tℓ). In fact, it is easy to see from (3.1) and (3.4) that

Wℓdℓ = −F (Yℓ;Tℓ) ⇐⇒


dℓ
T ℓ

= −xℓ
T ℓ
,

dℓ
Jℓ

= −νℓ
T ℓ
,

Gℓdℓ
Kℓ

= Dℓxℓ
T ℓ

−
(
F (Yℓ;Tℓ)

)
Kℓ
,

(4.2)
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Algorithm 1: SNSQP: Semi-smooth Newton algorithm for (SQCQP)

Initialize Y0, τ > 0, ε > 0, ρ ∈ (0, 1), and σ ∈ (0, 1/2). Select T0 ∈ Tτ (Y
0), and set ℓ⇐ 0.

while ∥F (Yℓ;Tℓ)∥ > ε do

Choose Wℓ ∈ ∂F (Yℓ;Tℓ).

Compute dℓ
T ℓ

= −xℓ
T ℓ

and dℓ
Jℓ

= −νℓ
T ℓ
.

Compute dℓ
Kℓ

by solving (4.5) if it is solvable and by solving (4.6) otherwise.

Find the smallest non-negative integer tℓ such that

Ψ
(
yℓ + dℓ(ρtℓ);Tℓ

)
≤ Ψ

(
yℓ; Tℓ

)
+ σρtℓ

〈
F (Yℓ; Tℓ),W

ℓdℓ
〉

(4.4)

Update yℓ+1 = yℓ + dℓ(ρtℓ) and Tℓ+1 ∈ Tτ (Y
ℓ). Set ℓ⇐ ℓ+ 1.

where Dℓ is a sub-matrix of Wℓ defined by

Dℓ :=


Hℓ

TℓT ℓ

0

Uℓ
1(B

ℓ
T ℓ:

)⊤

Uℓ
2A:T ℓ

 ∈ Rq×(n−s). (4.3)

Hereafter, let Hℓ =: ∇2
xxL

(
xℓ,µℓ,λℓ

)
. Matrices Wℓ and Gℓ are calculated similarly to (3.1) and

(3.4), where (Bℓ,Cℓ,Uℓ
1,U

ℓ
2,V

ℓ
1,V

ℓ
2) are computed using (3.2) by replacing Y∗ by Yℓ. The equiva-

lence in (4.2) enables a significant dimensional reduction, from (p×p) to (q×q), making large-scale

computation possible. However, when matrix Gℓ is in a bad condition, solving the following equa-

tions may yield an unfavorable direction dℓ
Kℓ

,

Gℓdℓ
Kℓ

= Dℓxℓ
T ℓ

−
(
F (Yℓ;Tℓ)

)
Kℓ

. (4.5)

To overcome such a drawback, we turn to solve the following equations as a compensation,(
Gℓ⊤Gℓ + κℓI

)
dℓ
Kℓ

= Gℓ⊤
(
Dℓxℓ

T ℓ
−
(
F (Yℓ;Tℓ)

)
Kℓ

)
, (4.6)

where κℓ > 0 is a decreasing scalar along with ℓ rising and limℓ→∞ κℓ = 0. For example, κℓ = 0.01/ℓ

used in the subsequent numerical experiment. Finally, given a step size α > 0, we define

dℓ(α) :=
(
dℓ
T ℓ
; dℓ

Jℓ
; αdℓ

Kℓ

)
(4.7)

to ensure point xℓ+1 ∈ S. This is because from (4.2), for any α > 0, we have

yℓ+1 = yℓ + dℓ(α) =
(
xℓ
T ℓ

+ dℓ
T ℓ
; νℓ

Jℓ
+ dℓ

Jℓ
; yℓ+1

Kℓ
+ αdℓ

Kℓ

)
=

(
0; 0; yℓ+1

Kℓ
+ αdℓ

Kℓ

)
. (4.8)

We observe that yℓ+1
T ℓ

corresponds to xℓ+1
T ℓ

, which by |T ℓ| = n− s results in xℓ+1 ∈ S. Consequently,
supp(xℓ) ⊆ Tℓ−1, leading to |T | := |Tℓ−1 ∩ T ℓ| ≤ s. This suffices to Dℓxℓ

T ℓ
= Dℓ

:Tx
ℓ
T in (4.2), which

significantly reduces the computational complexity of evaluating Dℓxℓ
T ℓ

from O(q(n− s)) to O(qs),

achieving a substantial efficiency gain. Overall, the complexity of solving (4.2) is about

O(s3 + ks2 + qs).
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The developed algorithmic framework is presented in Algorithm 1, which is called SNSQP, an

abbreviation for the Semi-smooth Newton for (SQCQP). To make the algorithm steady, we adopt

an Armijo line search to determine the step size at every step based on a merit function,

Ψ (y;T ) :=
1

2
∥F (Y;T )∥2 . (4.9)

Finally, it is important to point out that the stationary equations, (2.18), involve an unknown set

T . If this set were known in advance, one could employ the semismooth Newton-type method to

solve these equations with a fixed T and establish the local convergence rate in a way provided

in [47]. However, set T may change from one iteration to the next. A different set Tℓ leads to a

distinct system of equations, F (Y;Tℓ) = 0. Consequently, at each step, the algorithm computes

a Newton direction for a different system of equations, rather than a fixed one. This is where the

standard proof for the quadratic rate of convergence does not apply to our case. Nevertheless, we

establish this property for Algorithm 1 under the assumptions in Theorem 3.1, as outlined below.

4.2 Local convergence rate

In the sequel, we use notation ∥Y∥2 to denote

∥Y∥2 = ∥x∥2 + ∥µ∥2 + ∥λ∥2 + ∥ν∥2.

Similar to y defined in (4.1), let z ∈ Rp be the vectorization of Z ∈ E.

Corollary 4.1. Let x∗ be a P-stationary point of (SQCQP) with τ > 0 and the assumptions in

Theorem 3.1 hold at Y∗. Then for any given ϵ ∈ (0, 1), there is a neighbourhood N∗
ϵ of Y∗ such

that, for any point Y ∈ E ∩ N∗
ϵ ,

∥F (Z;T )∥ ≤ ϵ ∥F (Y;T )∥ , ∀ W ∈ ∂F (Y;T ), ∀ T ∈ Tτ (Y). (4.10)

where z := y −W−1F (Y;T ) is the vectorization of Z.

Proof. Let N∗ be a sufficiently small neighbourhood of Y∗ and consider Y ∈ E∩N∗. For each given

T ∈ Tτ (Y), every W ∈ ∂F (Y;T ) is nonsingular from Theorem 3.2. Then it follows,

∥Z−Y∗∥ =
∥∥y −W−1F (Y;T )− y∗∥∥

=
∥∥W−1 (F (Y;T )− F (Y∗;T )−W(y − y∗))

∥∥
≤

∥∥W−1
∥∥ ∥F (Y;T )− F (Y∗;T )−W(y − y∗)∥

= O(∥Y −Y∗∥2),

(4.11)

where the second equality is from Lemma 3.1 that F (Y∗;T ) = 0 for any T ∈ Tτ (Y) and the last

equality holds due to the strongly semismoothness of F (·;T ) atY∗ for given T . The above condition

means that Z also lies in N∗, which by semismooth implying B-differentiability, we have∥∥F (Z;T )− F (Y∗;T )− F ′ (Y∗;T ;Z−Y∗)
∥∥ = o(∥Z−Y∗∥) (4.12)

where F ′ (Y∗;T ;Z−Y∗) is the directional derivative of the function F (·;T ) at pointY∗ in direction

Z −Y∗. Now we can claim that given ϵ ∈ (0, 1), there is a smaller neighbourhood N∗
ϵ ⊆ N∗ such

that, for any Y ∈ N∗
ϵ ∩ E, ∥∥F (Z;T )− F ′ (Y∗;T ;Z−Y∗)

∥∥ ≤ ∥Z−Y∗∥,

∥Z−Y∗∥ ≤ κ∗∥Y −Y∗∥,
(4.13)
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where κ∗ := ϵ/(C∗(c∗ + 1) + ϵ), the first inequality is from F (Y∗;T ) = 0 and (4.12), the second

one is due to (4.11), and c∗ := supY∈N∗
ϵ
supW∈∂F (Y;T ) ∥W∥. The above conditions derive that

∥Y −Y∗∥ ≤ ∥Z−Y∥+ ∥Z−Y∗∥

= ∥W−1F (Y;T )∥+ ∥Z−Y∗∥

≤ C∗∥F (Y;T )∥+ ∥Z−Y∗∥

≤ C∗∥F (Y;T )∥+ κ∗∥Y −Y∗∥,

where the first inequality is from (3.13). This leads to

∥Y −Y∗∥ ≤ ϵ

(c∗ + 1)κ∗
∥F (Y;T )∥,

which by (4.13) further results in

∥F (Z;T )∥ ≤
∥∥F ′ (Y∗;T ;Z−Y∗)

∥∥+ ∥Z−Y∗∥

≤ (c∗ + 1)∥Z−Y∗∥

≤ (c∗ + 1)κ∗∥Y −Y∗∥

≤ ϵ∥F (Y;T )∥,

showing the desired result.

Theorem 4.1. Let x∗ be a P-stationary point of (SQCQP) with τ > 0 and the assumptions in

Theorem 3.1 hold at Y∗. Then in a neighborhood of Y∗, Algorithm 1 admits full Newton steps and

converges to Y∗ quadratically.

Proof. Let N∗ be a sufficiently small neighbourhood of Y∗ and {Yℓ} be the sequence generated

by Algorithm 1 in N∗. According to (4.8), xℓ+1 ∈ S and thus Yℓ ∈ E ∩ N∗. By Lemma 3.1, we

have Tℓ ∈ Tτ (Y
ℓ) ⊆ Tτ (Y

∗) . Recalling Theorem 3.2, any Wℓ ∈ ∂F (Yℓ;Tℓ) is nonsingular and

∥(Wℓ)−1∥ is bounded. Consequently, equations (4.2) or (4.5) are solvable. Now, we prove that the

full Newton steps always admit, namely ρtℓ = 1. Let zℓ := yℓ+dℓ(1) = yℓ+dℓ be the vectorization

of Zℓ ∈ E. Given σ ∈ (0, 1/2), it follows from Corollary 4.1 that∥∥∥F (Zℓ;Tℓ)
∥∥∥ ≤

√
1− 2σ

∥∥∥F (Yℓ;Tℓ)
∥∥∥ ,

which immediately delivers

Ψ(zℓ;Tℓ) =
1

2
∥F (Zℓ;Tℓ)∥2 ≤

1− 2σ

2
∥F (Yℓ;Tℓ)∥2 = (1− 2σ)Ψ(yℓ;Tℓ).

This condition indicates that

Ψ(yℓ + dℓ;Tℓ)−Ψ(yℓ;Tℓ) ≤ −2σΨ(yℓ;Tℓ) = −σ⟨F (Yℓ;Tℓ),W
ℓdℓ⟩,

which implies that condition (4.4) holds with a unit step length. Finally, the same reasoning to

show (4.11) enables us to obtain ∥Yℓ+1−Y∗∥ = O(∥Yℓ−Y∗∥2), a quadratic convergence rate.
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5 Numerical Experiments

In this section, we conduct extensive numerical experiments on sparse recovery problems, sparse

canonical correlation analysis, and sparse portfolio selection to showcase the performance of SNSQP.

All experiments are implemented in MATLAB R2021a, running on a laptop computer of 16GB

memory and Inter(R) Core(TM) i7 2.4Ghz CPU. In our numerical experiments, hyperparameters

for SNSQP are set as follows: ρ = 0.5, σ = 0.5, ν0i = 0, µ0i = 0.01, and λ0i = 0.01 for each i. The

choices of τ and initial point x0 vary depending on the specific problems.

5.1 Recovery problems

We first demonstrate the performance of SNSQP for solving a recovery problem using synthetic

datasets. The example is described as follows.

Example 5.1. Let f0 (x) =
1
2 ∥Dx− d∥2 and Qi = P⊤

i Pi+0.01I for i ∈ [k], where D ∈ Rd×n and

Pi ∈ Rn×n. Set X is chosen as Rn, [−2, 2]n, or [0,∞)n. Let a ground truth x∗ ∈ S be given with s

entries randomly selected to be 1. Then d = Dx∗ and each entry of D, Pi,qi, and A is generated

from standard normal distribution N (0, 1). To generate ci and b, we randomly select T1 ⊆ [k] with

|T1| = ⌈k/2⌉ and T2 ⊆ [m] with |T2| = ⌈m/2⌉, where ⌈t⌉ is the ceiling of t. Finally, define

ci =

−1
2⟨x

∗,Qix
∗⟩ − ⟨qi,x

∗⟩ − ζi, if i ∈ T1,

−1
2⟨x

∗,Qix
∗⟩ − ⟨qi,x

∗⟩, if i /∈ T1,
bi =

⟨ai,x∗⟩ − ξi, if i ∈ T2,

⟨ai,x∗⟩, if i /∈ T2,

where both ζi and ξi are uniform random variables from [0, 1].

To solve this example, we set τ = 3 and initialize x0 for SNSQP as follows: Randomly select s indices

to form Γ and set x0i = 0.1 if i ∈ Γ and x0i = 0 otherwise. The maximum number of iterations and

the tolerance are set as 104 and ε = 10−8. We report the relative error (Relerr := ∥x−x∗∥/∥x∗∥), the
objective function value (Fval), and the computational time in seconds to evaluate the performance

of different benchmark algorithms, where x is the solution generated by one algorithm.
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Figure 1: Effects of initial points for Example 5.1 (X = Rn).

a) Effect of initial points. As stated in Theorem 4.1, SNSQP is a local method. To assess the effect

of initial points x0, for Example 5.1 with (n, d, k,m, s) = (1000, 1000, 1, 1, 10), we run SNSQP with

50 random initial points and visualize the results in Figure 1, where the x-axis represents the initial

points. The stability of metrics such as relative errors, time, and iterations, suggests that it is

insensitive to the choices of the initial points for solving this example.
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Table 3: Numerical comparison with QCQP solvers for Example 5.1.

s n
Relerr Fval Time(s)

SNSQP CPLEX CVX SNSQP CPLEX CVX SNSQP CPLEX CVX

X = Rn

0.01n

1000 7.97e-16 6.57e-02 1.97e-02 8.32e-17 6.30e-08 7.34e-09 0.010 1.893 4.574

2000 3.07e-16 6.86e-02 2.61e-02 7.94e-16 1.15e-08 1.06e-08 0.017 36.51 52.96

3000 3.75e-16 4.15e-02 1.57e-02 8.87e-16 7.63e-08 4.02e-08 0.047 442.84 200.54

4000 2.25e-16 3.22e-02 1.08e-02 6.46e-16 5.21e-07 2.74e-08 0.079 1522.3 602.20

5000 5.59e-16 − 1.41e-02 7.20e-16 − 1.99e-08 0.127 − 1249.6

0.05n

1000 4.31e-16 1.76e-02 1.46e-02 6.66e-16 5.50e-08 1.32e-08 0.019 2.046 4.695

2000 4.45e-16 4.48e-02 2.44e-02 8.88e-16 1.25e-07 4.25e-08 0.036 35.502 51.72

3000 5.12e-16 1.12e-02 2.36e-02 8.02e-16 5.21e-07 2.88e-08 0.049 469.40 215.55

4000 5.00e-16 5.33e-02 1.52e-02 6.55e-16 7.23e-07 2.46e-08 0.198 1421.1 705.27

5000 6.21e-16 − 1.52e-02 7.79e-16 − 2.33e-08 0.402 − 1201.1

X = [−2, 2]n

0.01n

1000 1.98e-16 8.67e-02 2.34e-04 8.21e-16 6.81e-06 3.85e-12 0.012 2.490 5.495

2000 2.22e-16 1.69e-01 4.21e-04 7.15e-15 5.25e-05 1.71e-09 0.020 33.51 64.48

3000 5.16e-16 1.36e-01 7.24e-04 8.46e-16 4.38e-06 8.66e-12 0.031 279.17 191.43

4000 3.27e-16 1.02e-01 1.06e-03 8.57e-16 7.99e-06 1.03e-11 0.079 1554.5 614.24

5000 4.47e-16 − 1.11e-03 6.35e-16 − 7.54e-12 0.131 − 1251.2

0.05n

1000 4.29e-16 8.03e-02 3.04e-04 2.22e-16 3.87e-06 5.16e-12 0.017 3.048 6.199

2000 3.56e-15 1.43e-01 6.57e-04 6.33e-15 3.14e-05 7.69e-10 0.051 34.45 66.87

3000 5.33e-16 1.13e-01 3.90e-03 7.02e-16 5.79e-06 5.03e-12 0.085 302.34 225.15

4000 6.25e-16 1.21e-01 1.53e-03 6.73e-16 1.63e-05 4.12e-12 0.214 1513.4 722.78

5000 4.11e-16 − 2.01e-03 6.25e-16 − 3.86e-12 0.464 − 1267.3

X = [0,∞)n

0.01n

1000 5.27e-16 3.80e-02 2.00e-04 1.11e-16 2.83e-06 4.31e-09 0.014 2.347 8.527

2000 1.31e-16 2.23e-02 1.69e-04 3.65e-16 1.03e-06 4.48e-09 0.023 34.68 54.51

3000 3.34e-16 2.11e-02 2.06e-04 4.56e-16 6.81e-06 5.76e-09 0.051 217.73 258.91

4000 3.92e-16 1.12e-02 1.86e-04 5.69e-16 7.63e-06 1.36e-09 0.091 1460.0 751.15

5000 1.06e-15 − 1.79e-03 1.21e-16 − 5.90e-09 0.301 − 1631.5

0.05n

1000 4.48e-16 4.40e-02 1.81e-04 4.44e-16 7.40e-06 8.18e-09 0.023 3.464 8.414

2000 5.53e-16 6.70e-02 1.49e-02 1.35e-16 6.81e-06 2.56e-09 0.063 32.85 55.28

3000 5.79e-16 1.19e-02 1.59e-02 5.32e-16 2.36e-06 4.55e-09 0.248 239.25 275.00

4000 6.75e-16 1.07e-02 1.38e-04 1.25e-15 7.69e-06 1.86e-09 1.201 1500.2 775.68

5000 7.82e-16 − 1.82e-04 1.86e-16 − 1.33e-09 1.516 − 1816.8
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b) Comparison with QCQP solvers. We compare SNSQP with two quadratically constrained

quadratic programming solvers: CPLEX and CVX. For each n ∈ {1000, 2000, . . . , 5000}, we set

d = n+ 5, k = m = 0.001n, s = 0.01n or 0.05n. Then, we run 20 independent trials for each

(n, d, k,m, s). The median of the 20 trials is presented in Table 3, where − indicates cases where the

computational time exceeds one hour. The results show that SNSQP consistently achieves the low-

est Relerr and Fval across all cases, with an accuracy on the order of at least 10−15, indicating that

it finds the optimal solution. Regarding computation time, SNSQP is the fastest. As n increases,

the time required by CPLEX and CVX grows dramatically. For instance, when X = Rn, n = 5000,

and s = 0.01n, CPLEX exceeds one hour, CVX requires more than 1200 seconds, whereas SNSQP

consumes 0.127 seconds, a significant improvement.

c) Comparison with an MIP solver. We note that (SQCQP) is equivalent to the following MIP,

min
x,w

f0(x), s.t. x ∈ F ∩ X, ⟨1,w⟩ ≤ s, |xi| ≤Mwi, wi ∈ {0, 1}, i ∈ [n], (5.1)

where 1 := (1, 1, . . . , 1)⊤ and M > 0 is a large enough constant, which is set as M = 10 in this

example. The above problem can be directly solved by any MIP solver, such as GUROBI. Therefore,

we compare it with our proposed algorithm. For each n ∈ {100, 200, . . . , 1000}, other dimensions

(d, k,m, s) are set similarly to the comparison with QCQP solvers. The median results of 20

independent trials are presented in Table 4. It is shown that SNSQP achieves the lowest Relerr,

Fval, and the shortest computational time once again.

Table 4: Numerical comparison with an MIP solver for Example 5.1 with X = Rn.

s n
Relerr Fval Time(s)

SNSQP GUROBI SNSQP GUROBI SNSQP GUROBI

0.01n

100 8.63e-13 1.30e-03 2.08e-18 8.18e-08 0.002 0.617

300 1.76e-14 2.73e-04 1.38e-17 2.93e-08 0.003 3.217

500 6.64e-15 3.37e-04 5.55e-17 1.92e-08 0.006 8.490

700 3.36e-16 6.45e-04 5.59e-18 1.89e-08 0.009 22.66

1000 2.67e-16 9.63e-04 1.12e-17 2.17e-07 0.010 310.6

0.05n

100 2.78e-14 3.00e-04 5.55e-18 2.84e-08 0.003 0.886

300 6.25e-14 2.86e-04 4.44e-17 7.91e-08 0.005 24.12

500 2.84e-14 1.50e-04 3.33e-17 1.05e-08 0.006 699.8

700 5.45e-16 1.30e-03 3.17e-17 1.87e-07 0.012 334.4

1000 5.60e-16 − 4.10e-16 − 0.012 −

d) Effect of higher dimensions. We evaluate the performance of SNSQP in solving Example 5.1 in

higher-dimensional settings. A comparison with other solvers is omitted, as Tables 3 and 4 indicate

that they exhibit significantly higher computational costs for such cases. Table 5 presents the

median results over 10 independent runs, where d = n+ 5 and k = m = 5. The results demonstrate

that the Relerr and Fval obtained by SNSQP remain stable, consistently ranging in magnitude from

10−13 to 10−15, while maintaining efficient computational performance. Specifically, for n = 30, 000,

the computational time is 3.251 seconds and 33.59 seconds for s = ⌈0.01n⌉ and s = ⌈0.05n⌉.
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Table 5: Results by SNSQP for Example 5.1 with X = [−2, 2]n in higher dimensions.

n
s = 0.01n s = 0.05n

Relerr Fval Time(s) Relerr Fval Time(s)

10000 5.47e-15 4.44e-15 0.284 1.89e-14 7.10e-15 3.392

15000 1.03e-14 4.46e-15 0.895 1.42e-14 1.52e-15 4.581

20000 2.25e-14 7.10e-15 1.153 1.57e-15 1.05e-15 10.54

25000 1.82e-13 2.84e-14 2.741 2.13e-14 5.46e-15 15.82

30000 8.03e-14 7.10e-15 3.251 5.68e-14 1.99e-15 33.59

5.2 Sparse canonical correlation analysis

The sparse canonical correlation analysis (SCCA) problem takes the form of:

max ⟨wx,Σxywy⟩

s.t. ⟨wx,Σxxwx⟩ ≤ 1, ∥wx∥0 ≤ sx,

⟨wy,Σyywy⟩ ≤ 1, ∥wy∥0 ≤ sy,

(SCCA)

where Σxy ̸= 0 is the cross-covariance matrix between two given data matrices X and Y, namely

Σxy = XY⊤, andΣxx andΣyy represent the covariance matrices forX andY, namelyΣxx = XX⊤

and Σyy = YY⊤. By letting s = sx + sy and

Q0 =

[
0 Σxy

Σxy⊤ 0

]
, Q1 =

[
Σxx 0

0 Σyy

]
, x =

[
wx

wy

]
,

problem (5.2) can be relaxed in the form,

max ⟨x,Q0x⟩, s.t. ⟨x,Q1x⟩ ≤ 2, ∥x∥0 ≤ s. (5.2)

This is a relaxation of problem (SCCA) because its feasible region includes the feasible region of

(SCCA). However, the following result shows that the optimal solutions to them have a close

relationship. Therefore, we employ SNSQP to solve (5.2), a special case of (SQCQP).

Proposition 5.1. Any optimal solution (xx;xy) of (5.2) satisfies ∥xx∥0 > 0 and ∥xy∥0 > 0.

Proof. Since Σxy ̸= 0, there is Σxy
i0j0

̸= 0. Consider a point x := (u;v) such that

ui =


1√
Σxx

i0i0

if i = i0, Σ
xx
i0i0

̸= 0,

1 if i = i0, Σ
xx
i0i0

= 0,

0 if i ̸= i0,

vj =



sign
(
Σxy

i0j0

)
√

Σyy
j0j0

if j = j0, Σ
yy
j0j0

̸= 0,

1 if j = j0, Σ
yy
j0j0

= 0,

0 if j ̸= j0,

where sign(t) is the sign of t. Therefore, x = (u;v) is feasible to problem (5.2), and meanwhile

it satisfies that ⟨x,Q0x⟩ > 0. Note that any point x′ = (u′;v′) satisfying ∥u′∥0 = 0 or ∥v′∥0 = 0

leads to ⟨x′,Q0x
′⟩ = 0. Hence, x′ is not the optimal solution, showing the desired result.
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5.2.1 Benchmark methods

Many algorithms have been proposed to address SCCA problems. The majority of these methods

are based on relaxations of the ℓ0 norm, while a subset employs greedy strategies. We select

three representative relaxation-based approaches: SGEM [49], SCCA [22], and SCCAPD [33], in

addition to two greedy algorithms: SpanCCA [2] and SWCCA [43]. It is important to note that

the greedy methods are applicable only in scenarios where the covariance matrices are identity

matrices. Consequently, in the subsequent numerical experiments, we specifically set Σxx = I and

Σyy = I when evaluating SpanCCA and SWCCA.

The hyperparameters for all algorithms are configured as follows. For SNSQP, initial point x0 is

generated using MATLAB built-in function canoncorr, while τ is selected via a grid search over

{0.001, 0.002, . . . , 0.01}. For SGEM, the same initial point as in SNSQP is used, with parameters

set as ϵ = 10−6 and τ = max{0,−λmin(Q0)}, where λmin(Q0) represents the smallest eigenvalue

of Q0. For SCCA, maximum number ℓmax of iterations is fixed at 5000, and δ is selected from a

predefined grid {0.1, 0.2, . . . , 1}. For SCCAPD, we use its default settings. For SpanCCA, we set

ℓmax = 5000 and r = 5. For SWCCA, the initial point is the same as in SNSQP, and the sparsity

level of w is set to be 0.6N . It terminates when either ℓ > 5000 or ∥wk+1−wk∥2 < 10−6 is satisfied.

To evaluate the performance, we report the correlation, sparsity levels ρx and ρy of wx and wy,

violation VOCx and VOCy of the unit variance constraint, and the computational time, where

Correlation :=
⟨wx,Σxywy⟩√

⟨wx,Σxxwx⟩⟨wy,Σyywy⟩
,

ρx :=
nx − ∥wx∥0

nx
, VOCx := ∥⟨wx,Σxxwx⟩ − 1∥,

ρy :=
ny − ∥wy∥0

ny
, VOCy := ∥⟨wy,Σyywy⟩ − 1∥.

5.2.2 Testing examples

Example 5.2 (Synthetic data [22]). Let X ∈ Rnx×N and Y ∈ Rny×N be generated by

X = ((1;−1; 0) + ϵ)u⊤, Y = ((0;1;−1) + ε)u⊤, (5.3)

where 1 ∈ Rnx/8, ϵ ∈ Rnx and ε ∈ Rny are two noise vectors with ϵi ∼ N (0, 0.12) and εi ∼
N (0, 0.12), and u ∈ RN is a random vector with ui ∼ N (0, 1).

Example 5.3 (Real data). Four real datasets are selected to generate X and Y. They are SRBCT,

lymphoma, breast cancer, and glioma1 [14, 15] with details summarized in in Table 6. The

sample-wise normalization is conducted on them so that each sample has mean zero and variance

one. In addition, SRBCT and lymphoma only contain one set of samples, so we manually divide the

variables into two equal parts to obtain X and Y.

5.2.3 Numerical comparison

From the construction of X and Y in Example 5.2, it is evident that the first nx/4 variables of X

exhibit correlation with the last nx/4 variables of Y. An effective sparse CCA algorithm should be

1Available at www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2223.
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Table 6: Descriptions of four real datasets.

Datasets Source N n nx ny

SRBCT R package: plsgenomics [13] 82 2308 1154 1154

lymphoma R package: KODAMA [17] 61 4026 2013 2013

breast cancer R package: PMA [57] 89 21821 2149 19672

glioma NCBI: Gene Expression Omnibus 55 62127 22962 39165

capable of computing weight vectors wx and wy that accurately identify these correlated variables.

Specifically, the nonzero elements of wx should be restricted to the first nx/4 components, while

those of wy should be confined to the last nx/4 components. As illustrated in Figure 2, the SNSQP

algorithm successfully achieves this objective.

1 50 450 500

-20

-10

0

10

20

(a) nx = 200, ny = 300

1 250 2250 2500

-0.2

-0.1

0

0.1

0.2

(b) nx = 1000, ny = 1500

Figure 2: Solutions obtained by SNSQP for Example 5.2 with s = 10.

Table 7: Comparison with relaxation methods for Example 5.2.

Algs. Para. Correlation ρx ρy VOCx VOCy Time(s)

nx = 200, ny = 300

SNSQP s = 5 1.0000 99.0% 99.0% 6.43e-15 5.99e-15 0.006

s = 10 1.0000 99.0% 97.3% 1.34e-10 1.78e-10 0.009

ρ = 0.01 0.9980 99.5% 99.7% 1.94e-02 1.94e-02 18.51

ρ = 0.005 1.0000 76.0% 84.3% 1.69e-04 1.69e-04 6.388

SCCA µ = 5 1.0000 99.0% 99.0% 2.35e-05 8.64e-04 0.120

µ = 10 1.0000 99.5% 99.3% 4.65e-05 9.17e-04 0.207

SCCAPD 1.0000 75.0% 61.6% 6.43e-16 5.99e-16 0.024

nx = 1000, ny = 1500

SNSQP s = 5 1.0000 99.8% 99.8% 1.61e-15 1.62e-15 0.005

s = 10 1.0000 99.7% 99.5% 1.64e-10 1.64e-10 0.008

SGEM ρ = 0.01 0.9990 96.5% 97.5% 2.86e-05 2.86e-05 166.52

ρ = 0.005 1.0000 95.6% 96.8% 6.71e-05 6.71e-05 138.08

SCCA µ = 5 1.0000 99.5% 99.2% 1.01e-10 9.90e-04 0.419

µ = 10 1.0000 99.8% 99.3% 5.09e-13 9.90e-04 0.700

SCCAPD 1.0000 92.9% 64.8% 2.22e-16 5.99e-16 0.035
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A comprehensive numerical comparison of SNSQP with three relaxation algorithms for solving Ex-

ample 5.2 and Example 5.3 is presented in Table 7 and Table 8. One can observe that SNSQP

outperforms the others in terms of overall performance, achieving the highest correlation and spar-

sity levels while maintaining the fastest computational efficiency.

Table 8: Comparison with relaxation methods for Example 5.3.

Algs. Para. Correlation ρx ρy VOCx VOCy Time(s)

SRBCT

SNSQP s = 40 0.9968 97.83% 98.70% 1.26e-14 1.26e-14 0.014

s = 80 1.0000 96.62% 96.45% 4.68e-11 4.68e-11 0.035

SGEM ρ = 0.01 0.6317 1.822% 1.215% 3.10e-03 3.10e-03 1587.2

ρ = 0.005 0.5879 0.435% 0.782% 2.61e-03 2.61e-03 1177.9

SCCA µ = 5 1.0000 86.40% 86.74% 8.11e-04 3.51e-04 0.842

µ = 10 0.9887 91.16% 90.81% 7.23e-02 6.45e-03 0.826

SCCAPD 0.9316 98.09% 66.20% 3.32e-16 2.22e-16 0.063

lymphoma

SNSQP s = 20 0.9904 99.35% 99.65% 5.57e-11 5.57e-11 0.014

s = 50 0.9999 98.56% 98.96% 6.94e-11 6.94e-11 0.034

SCCA µ = 5 0.9014 98.61% 98.56% 1.82e-02 2.80e-02 2.759

µ = 10 0.4016 99.65% 99.60% 1.32e-02 2.80e-02 3.865

SCCAPD 0.9210 99.06% 56.38% 4.44e-16 4.44e-16 0.162

breast cancer

SNSQP s = 40 0.9941 99.58% 99.84% 9.28e-09 9.28e-09 0.110

s = 80 1.0000 99.44% 99.76% 3.87e-09 3.87e-09 0.160

SCCA µ = 0.5 0.9835 95.86% 99.72% 1.34e-03 1.55e-02 36.27

µ = 1 0.7723 96.32% 99.94% 8.04e-03 3.95e-01 36.15

SCCAPD 0.9193 99.67% 99.74% 3.33e-16 5.55e-16 0.164

glioma

SNSQP s = 50 1.0000 99.92% 99.92% 1.07e-11 1.07e-11 0.476

s = 100 1.0000 99.80% 99.86% 3.31e-08 3.31e-08 0.341

SCCA µ = 0.2 0.9955 99.31% 99.56% 1.48e-02 9.83e-03 355.49

µ = 0.5 0.8825 99.53% 99.78% 9.29e-02 2.64e-01 353.38

SCCAPD 0.9223 99.98% 99.84% 2.22e-16 1.11e-16 3.117

We further compare SNSQP with two greedy methods, SpanCCA and SWCCA, to examine the

effect of the sparsity level s. As shown in Figure 3, the correlation computed by all three methods

exhibits an increasing trend as s grows. SNSQP consistently achieves the highest correlation level.

It is noteworthy that SWCCA is very fast for this example, as it solves the problem with identity

covariance matrices, i.e., Σxx = I and Σyy = I, that enable closed-form solutions to subproblems.

However, due to this simplification, SWCCA fails to yield desirable correlation.
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Figure 3: Effect of sparsity level s for Example 5.2.

5.3 Sparse portfolio selection problem

The sparse portfolio selection (SPS) problem proposed in [24] is formulated as follows,

min ⟨x, (Q+Q1)x⟩

s.t. ⟨x,Q1x⟩ ≤ σ0, ⟨x,a1⟩ ≥ r0, ⟨x,1⟩ = 1,

∥x∥0 ≤ s, x ∈ {0} ∪ [a,b] ,

(SPS)

where Q ∈ Rn×n is a symmetric positive semi-definite matrix, D ∈ Rn×n is a non-negative diagonal

matrix, a1 ∈ Rn is the return vector, σ0 is the prescribed nonsystematic risk level and r0 is

the prescribed weekly return level, and a,b ∈ Rn are the lower and upper bounds of x. In

the objection function, first part ⟨x,Qx⟩ is called systematic risk and second part ⟨x,Q1x⟩ is

called nonsystematic/specific risk. In the sequel, we set set (σ0, r0) = (0.001, 0.002), a = 0, and

b = (0.3, 0.3, . . . , 0.3)⊤. We note that the formulation in (SPS) includes an equality constraint.

Following the approach in LNA [60], we handle this constraint by directly incorporating it into the

stationary equations for Newton’s method iterations, rather than using the NCP function.

5.3.1 Benchmark methods

We compare SNSQP with SALM [4] and GUROBI. In this comparison, GUROBI is used to solve a

reformulation of (SPS), where the sparsity constraint is replaced by the ones in (5.1). Its maximal

runtime is set to one hour. For SALM, we configure the step size as ω = 0.3 for Example 5.4

and ω = 1 for Example 5.5. The initial Lagrange multiplier and penalty parameter are set to
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λ0 = 0 and ρ = 1. For SNSQP, we set τ = 1. Both algorithms terminate when either ℓ > 1000 or

the tolerance condition | · | ≤ 10−6 is met. Additionally, we use CVX to solve (SPS) without the

sparsity constraint to provide an initial point for all methods. Since GUROBI enables high-quality

approximation of the global solution, we use the relative error defined by Relerr = |f − fMIP|/fMIP

to measure the accuracy of SNSQP and SALM, where f is their objective function values and fMIP

is the one obtained by GUROBI.

5.3.2 Testing examples

Example 5.4 (Portfolio datasets). The dataset are drawn from the Standard and Poor’s 500

(S&P 500) and Russell 2000 indices. Specifically, we utilize weekly return data for 468 stocks from

the S&P 500 and 873 stocks from the Russell 2000 over the period from 2015 to 2020. The matrices

Q and Q1 are derived from factor models constructed for these datasets. In addition, we randomly

select n stocks from the entire stock pool.

Table 9: Comparison with two methods for Example 5.4

n sn
Relerr Fval Time(s)

SNSQP SALM SNSQP SALM GUROBI SNSQP SALM GUROBI

S&P500

50 5 0.032 0.048 2.88e-04 2.90e-04 2.79e-04 0.011 0.069 0.336

10 0.004 0.008 2.49e-04 2.51e-04 2.48e-04 0.030 0.190 0.455

100 5 0.085 0.114 2.89e-04 2.97e-04 2.66e-04 0.013 0.527 1.092

10 0.013 0.024 2.45e-04 2.48e-04 2.42e-04 0.051 0.996 2.526

200 5 0.127 0.135 2.52e-04 2.54e-04 2.24e-04 0.072 1.156 5.279

10 0.003 0.013 1.96e-04 1.98e-04 1.95e-04 0.170 1.789 12.42

300 5 0.044 0.086 2.38e-04 2.48e-04 2.28e-04 0.180 2.880 29.60

10 0.060 0.091 1.90e-04 1.95e-04 1.79e-04 0.199 3.724 126.88

400 5 0.063 0.075 2.52e-04 2.55e-04 2.37e-04 0.070 2.696 116.16

10 0.037 0.092 1.86e-04 1.96e-04 1.79e-04 0.091 5.069 1379.6

Russell2000

50 5 0.016 0.027 5.22e-04 5.28e-04 5.16e-04 0.020 0.081 0.233

10 0.008 0.150 4.13e-04 4.22e-04 4.09e-04 0.014 0.043 0.320

200 5 0.016 0.039 2.70e-04 2.77e-04 2.66e-04 0.061 1.421 11.66

10 0.002 0.010 2.71e-04 2.73e-04 2.70e-04 0.035 0.836 7.501

400 5 0.006 0.035 2.09e-04 2.16e-04 2.08e-04 0.031 4.023 804.93

10 0.019 0.034 2.08e-04 2.12e-04 2.04e-04 0.088 5.688 830.44

600 5 0.002 0.016 2.08e-04 2.10e-04 2.07e-04 0.038 8.602 510.25

10 0.012 0.045 2.43e-04 2.50e-04 2.40e-04 0.041 9.542 3593.1

800
5 0.000 0.014 2.04e-04 2.07e-04 2.04e-04 0.052 15.82 2951.6

10 0.007 0.038 1.61e-04 1.66e-04 1.59e-04 0.061 12.08 3600.0
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Example 5.5 (Synthetic data). Slightly higher-dimensional datasets are generated as follows.

Let Q0 = D⊤D with D ∈ Rn/4×n. Each entry of D and each diagonal entry of Q1 are independently

sampled from a uniform distribution over [0, 0.01], while each entry of a1 is drawn from a normal

distribution N (0, 0.52). We vary n over set {1000, 1500, . . . , 3000}.

5.3.3 Numerical comparison

As shown in Table 9, SNSQP consistently achieves lower Relerr and Fval than SALM across all

cases for both datasets, indicating superior solution quality. Additionally, SNSQP demonstrates a

significant speed advantage over its counterparts in every scenario, particularly in high-dimensional

cases. For instance, on the Russell2000 dataset with (n, S) = (800, 5), the computational time

of SNSQP, SALM, and GUROBI is 0.052, 15.82, and 2951.6 seconds, respectively. Finally, we

examine the numerical comparison for slightly higher-dimensional scenarios based on Example 5.5.

Since GUROBI requires a significantly longer time to solve the problem, it is excluded from the

comparison. The results in Table 10 show that SNSQP not only achieves lower Fval but also runs

much faster than SALM across all test instances.

Table 10: Comparison for Example 5.5 in higher dimensions.

n

s = 5 s = 10

Fval Time(s) Fval Time(s)

SNSQP SALM SNSQP SALM SNSQP SALM SNSQP SALM

1000 5.83e-03 5.84e-03 0.012 13.18 5.69e-03 5.71e-03 0.029 8.280

1500 8.43e-03 8.46e-03 0.042 46.31 8.47e-03 8.49e-03 0.047 29.92

2000 1.16e-02 1.17e-02 0.030 104.67 1.14e-02 1.15e-02 0.032 91.58

2500 1.50e-02 1.51e-02 0.032 219.62 1.46e-02 1.48e-02 0.035 180.06

3000 1.80e-02 1.82e-02 0.039 443.45 1.75e-02 1.76e-02 0.042 406.82

6 Conclusion

It is known that SQCQP is a computationally challenging problem, particularly in large-scale or

high-dimensional settings. In contrast to existing methods, which primarily focus on solving its

mixed-integer programming reformulations or relaxations, we introduce a novel paradigm by de-

signing an efficient semismooth Newton-type algorithm, SNSQP, that directly tackles SQCQP. The

key innovation of our approach lies in the formulation of a newly introduced system of stationary

equations, which characterizes the optimality conditions of the original problem. The algorithm is

classified as a second-order method and thus exhibits a locally quadratic convergence rate while

maintaining relatively low computational complexity due to the sparse structure of the solution. Ex-

tensive numerical experiments demonstrate that the algorithm consistently produces high-accuracy

solutions with fast computational speed. However, given the challenges in establishing global con-

vergence, the method remains local. Considering its strong numerical performance and extensive

applications, ensuring its global convergence is worthy of further research.
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