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ABSTRACT
This paper is concerned with the tensor sparse principal com-
ponent analysis (TSPCA) by obtaining principal components
which are linear combinations of a small subset of the origi-
nal features for tensorial data. The core mathematical model
can be formulated as a nonsmooth nonconvex optimization
problem with a polynomial objective function, and with the
sparsity constraint and the unit Euclidean spherical constraint.
By employing the tools in tensor analysis, along with the vari-
ational properties for the involved �0-norm, the optimality
condition of TSPCA is analysed in terms of stationary points.
To well resolve the problem, we reformulate the stationary
conditions into the Lagrange stationary equation system via
the property of the projection operator onto the sparsity con-
straint set. With special emphasis on the Jacobian nonsin-
gularity of the corresponding nonlinear system, we propose
the Lagrange–Newton algorithm for pursuing the stationary
point, which serves as a promising approximation of the opti-
mal solution to TSPCA. The locally quadratic convergence rate
is also established under mild conditions. Numerical exper-
iments illustrate the effectiveness of our proposed TSPCA
approach in terms of the solution accuracy as well as the
computation time.
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1. Introduction

The tensor Principal Component Analysis (PCA), as a higher-order generaliza-
tion of the traditional PCA, is an important and prevalent approach for modern
data analysis, with wide applications in computer vision, diffusion magnetic
resonance imaging, signal processing, spectral hypergraph theory and higher-
order statistics [1–5]. To solve principal components (PCs, i.e. linear combi-
nations of original variables) of tensors, Qi et al. [6] have proposed a class of
Z-eigenvalue methods for four tensor cases with different orders and dimen-
sions, and showed the effectiveness and prospect of methods through numerical
experiments. Under the assumption of rank-one tensor data, Jiang et al. [7] have
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equivalently reformulated the tensor PCA problem as the matrix optimization
with a rank-one constraint, and proposed two solution methods for solving the
new matricization model. Huang et al. [8] have studied the convergence and sta-
tistical inference aspects of the power iteration algorithm for solving the tensor
PCA model.

However, one drawback of the existing work on tensor PCA is that the
obtained solution of PCs is usually dense, that is, PCs are linear combinations
of all original variables. This makes tensor PCA difficult to interpret when the
data dimension increases in practical problems. To deal with this problem, [9–11]
have imposed a sparsity constraint on PCs of traditional PCA frameworks, which
yields the so-called Sparse Principal Component Analysis (SPCA). The existing
research on SPCAmainly focuses on matrix data, while the discussion on tensor
data is relatively lacking. Considering this, as well as the inherited characteristics
of the correlation structure of tensor data, we establish the following tensor SPCA
(TSPCA) problem:

min
x∈Rn

−〈A, x ◦ x ◦ · · · ◦ x〉 s.t. xTx = 1, ‖x‖0 ≤ s, (1)

where A = (ai1...im) ∈ Sm,n is an m-th order n-dimensional real supersymmet-
ric tensor, i.e. the entry ai1...im of A remains unchanged under any permutation
π(i1, . . . , im) of index (i1, . . . , im), x ◦ x ∈ Rn×n is the outer product of vectors.
This optimization problem is nonconvex and noncontinuous due to the involved
�0-norm.

The TSPCA model (1) is actually a special case of sparse nonlinear program-
ming (SNP) problems:

min
x∈Rn

f (x) s.t. h(x) = 0, x ∈ S, (2)

where f : Rn → R, h : Rn → Rm are twice continuously differentiable func-
tions, S := {x ∈ Rn : ‖x‖0 ≤ s} is the sparsity constraint set. For SNP problems
resolution, existing numerical algorithms can be divided into two mainstream
categories. The first category is the ‘relaxation’ method, which approximates the
nonconvex and noncontinuous �0-norm as a continuous and/or convex surro-
gate function. Great progress on such relaxation methods has been made in
[12–14]. The second one is the ‘greedy’ algorithm, which deals with the �0-
norm constraint directly. This type of methods mainly includes first-order algo-
rithms [15–17] and second-order algorithms using Newton step interpolation
[18–20]. Recently, Zhao et al.[21] have proposed a locally quadratic convergent
Lagrange–Newton algorithm (LNA) under mild conditions and shown its effi-
ciency and superiority numerically. This inspires us to apply LNA to solve the
TSPCA problem (1).

In this paper, we first propose the TSPCA model, in which the original �0-
norm constraint is directly used for pursuing sparsity PCs instead of the existing
relaxation schemes. Furthermore, the optimality condition of the TSPCAmodel,
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Table 1. A list of notation.

Notation Description

[n] := {1, 2, . . . , n}.
|t| the absolute value of a scalar t.
Tm,n the linear space of all realm-th order n-dimensional tensors.
Sm,n the set ofm-th order n-dimensional real supersymmetric tensors.
x(i) the i-th largest element of a vector x.
‖x‖∞ := max{|xi|, i ∈ [n]}, the �∞-norm of a vector x.
�∗ := {i ∈ [n] : x∗i �= 0}, the support set of the vector x∗ .
T index set from [n].
|T| cardinality of the set T.
Tc the complementary set of T.
Js := {J ⊆ [n] : |J| = s}.
Js(x) := {J ∈ Js : {i ∈ [n] : xi �= 0} ⊆ J}.
N(x) := {d ∈ Rn : dTx = 0} the subspace that orthogonal to the vector x.
I the identity matrix.
xT the subvector of x containing elements indexed by T.
AT ,J the submatrix ofAwhose rows and columns are respectively indexed by T and J.
AT ,: the submatrix ofA containing rows indexed by T.
rank(A) the rank of the matrixA.
Tr(A) the trace of the matrixA.
ATm the subtensor ofA indexed by T at each order.
AT ,J(m−1) the subtensor ofAwhose first order is indexed by T and the otherm−1 orders are indexed by J.
‖x‖ the Euclidean norm of the vector x.
‖A‖ the spectral norm of the matrixA.
‖A‖∗ the nuclear norm of the matrixA.
‖A‖F the Frobenius norm of the tensorA. IfA ∈ Tm,n , then ‖A‖F :=

(∑n
i1,i2,...,im=1 |ai1···im |2) 1

2 .

and the nonsingularity of the Jacobian matrix of the Lagrangian stationary
equation system are discussed under a mild condition. This can provide theo-
retical guarantees for the design of Newton-type algorithm. Finally, we develop
LNA for solving TSPCA and establish its locally quadratic convergence.

The remainder of this paper is organized as follows. Section 2 analyses the
optimality condition of the proposed TSPCA problem based on a strong β-
Lagrangian stationary point. In Section 3, the nonsingularity of the Jacobian
matrix of the Lagrangian stationary equation system is discussed under a mild
condition. In Section 4,we design LNA for solvingTSPCAand establish its locally
quadratic convergence. Numerical results on synthetic data sets and real data
sets are given in Section 5. Conclusions are drawn in Section 6. For convenience,
notation that will be used throughout the paper is listed in Table 1.

2. Optimality analysis

In this section, we aim to analyse the optimality condition of problem (1) by
introducing a strong β-Lagrangian stationary point, and establish the equiva-
lent Lagrange stationary equation system based on the structural characteristic
of the sparse projection operator. This provides a theoretical basis for the design
of Lagrange–Newton algorithm for problem (1).
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Considering the TSPCA problem (1), we denote

f (x) = −〈A, x ◦ x ◦ · · · ◦ x〉 = −Axm

= −
n∑

i1=1
· · ·

n∑
im=1

ai1...imxi1xi2 · · · xim ,

and

h(x) = xTx − 1.

The Lagrangian function of problem (1) is

L(x, y) = f (x) − y · h(x), ∀ x ∈ R
n, y ∈ R.

Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇f (x) = −mAxm−1 =
⎛
⎝−m

n∑
i2=1

· · ·
n∑

im=1
aii2···imxi2 · · · xim

⎞
⎠ ∈ R

n,

∇2f (x) = −m(m − 1)Axm−2

=
⎛
⎝−m(m − 1)

n∑
i3=1

· · ·
n∑

im=1
aiji3···imxi3 · · · xim

⎞
⎠ ∈ R

n×n,

∇h(x) = 2x, ∇2h(x) = 2I,
∇xL(x, y) = −mAxm−1 − 2yx,
∇2
xxL(x, y) = −m(m − 1)Axm−2 − 2yI,

∇2L(x, y) =
[

−m(m − 1)Axm−2 − 2yI 2x,
2xT 0

]
∈ R(n+1)×(n+1).

(3)

By invoking the strong β-Lagrangian stationary point that introduced in [21],
we can also get the specific definition of the same type of stationary point for
problem (1) as below.

Definition 2.1: Given x∗ ∈ Rn, β > 0, if there exists a Lagrangian multiplier
y∗ ∈ R such that {

x∗ = �S
(
(1 + 2y∗)x∗ + βmA(x∗)m−1) ,

(x∗)Tx∗ = 1, (4)

where �S(·) is the projection operator on the sparsity set S, then x∗ is called a
strong β-Lagrangian stationary point of problem (1).

Using the above strong β-Lagrangian stationary point, we establish the following
optimality conditions.
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Theorem 2.2: Let x∗ be a local minimizer of problem (1). Then there exists a
unique y∗ ∈ R such that x∗ is a strong β-Lagrangian stationary point of problem
(1) for any β ∈ (0, β̂), where

β̂ =
⎧⎨
⎩

|x∗|(s)
m
∥∥∥A

(�∗)c ,(�∗)(m−1) (x∗
�∗ )(m−1)

∥∥∥∞
, if ‖x∗‖0 = s and (A(x∗)m−1)(�∗)c �= 0,

+∞, otherwise.
(5)

Proof: Since x∗ is a local minimizer of problem (1), we know that

rank (∇�∗h(x)) = rank
(
2x∗

�∗
) = 1,

and

∇xL(x∗, y∗)(�∗)c =(−mA(x∗)m−1)(�∗)c − 2y∗x∗
(�∗)c

=
⎛
⎝−m

n∑
i2=1

· · ·
n∑

im=1
aii2···imx

∗
i2 · · · x∗

im

⎞
⎠

i∈(�∗)c

=
⎛
⎝−m

∑
i2∈�∗

· · ·
∑
im∈�∗

aii2···imx
∗
i2 · · · x∗

im

⎞
⎠

i∈(�∗)c

=A(�∗)c(�∗)m−1(x∗
�∗)m−1.

Thus, according to [21, Theorem 1], there exists a unique y∗ ∈ R such that x∗
satisfies formula (4) provided that β ∈ (0, β̂) with β̂ given in (5). �

To deal with the non-differentiable projection operator �S(·), we reformulate
the optimality condition (4) by the following collection of sparse projection index
sets.

Definition 2.3 ([21, Definition 2]): Given x ∈ S, y ∈ R and β > 0, denote u =
x − β∇xL(x, y). Then the collection of sparse projection index sets ofu is denoted
by

T(x, y;β) ={T ∈ Js : |ui| ≥ |uj|, ∀ i ∈ T, ∀j ∈ Tc}. (6)

Theorem 2.4: Given x∗ ∈ S, y∗ ∈ R,β > 0, x∗ is a strong β-Lagrangian station-
ary point of (1) with the Lagrangian multiplier y∗ if and only if for any T ∈
T(x∗, y∗;β),

F(x∗, y∗;T) :=
⎡
⎣(∇xL(x∗, y∗))T

x∗
Tc

−h(x∗)

⎤
⎦ =

⎡
⎣(−mA(x∗)m−1 − 2y∗x∗)T

x∗
Tc

1 − (x∗)Tx∗

⎤
⎦ = 0.

(7)
In addition, T(x∗, y∗;β) =Js(x∗).
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Proof: For the TSPCA problem (1), it follows from [21, Theorem 3] that the
optimality condition (7) is satisfied and T(x∗, y∗;β) = Js(x∗). �

Let BT = mATm(x∗
T)m−2. By invoking Theorem 2.4, we have the following

properties of BT .

Theorem 2.5: Let x∗ be a strong β-Lagrangian stationary point of problem (1)
with the Lagrangian multiplier y∗ ∈ R. Then for any T ∈ Js(x∗), x∗

T is an eigen-
vector of BT with the corresponding eigenvalue −2y∗.

Denote z∗ = (x∗, y∗). To solve the smooth Lagrangian stationary Equation (7)
for a given T ∈ T(x∗, y∗;β), we next focus on the Jacobianmatrix∇(x,y)F(x, y;T)

and analyse its nonsingularity in a neighbourhood of z∗, where

∇(x,y)F(x, y;T) :=
⎡
⎣(−m(m − 1)Axm−2 − 2yI)T,: −2xT

ITc 0
−2xTT 0

⎤
⎦ ∈ R

(n+1)×(n+1).

(8)
Performing elementary operations, we can get the following reduced Jacobian
matrix

G(x, y;T) :=
[
(−m(m − 1)Axm−2 − 2yI)T,T −2xT

−2xTT 0

]
∈ R

(s+1)×(s+1), (9)

which has the same nonsingularity as ∇(x,y)F(x, y;T). Thus, it suffices to show
that the reduced JacobianmatrixG(x, y;T) is nonsingular in a neighbourhood of
z∗.

3. Jacobian nonsingularity

In this section, we focus on the nonsingularity of the Jacobian matrix of
Lagrangian stationary Equation (7). The following twomain theorems give some
useful properties, as well as the nonsingularity of Jacobian matrix under mild
conditions. These crucial results provide theoretical guarantees for establishing
the convergence of Lagrange–Newton algorithm.

Theorem 3.1: Let x∗ be a strong β-Lagrangian stationary point of problem (1)
with the Lagrangian multiplier y∗ ∈ R. We have the following properties.

(i) ∀ T ∈ Js(x∗), rank(∇Th(x∗)) = 1.
(ii) ∇2f and ∇2h are Lipschitz continuous near x∗.
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Proof: For (i), we know from (4) that (x∗)Tx∗ = 1, which yields

rank
(∇Th(x∗)

) = rank
(
2x∗

T
) = 1, ∀ T ∈ Js(x∗).

For any x1, x2 ∈ N(x∗, δ0) := {x ∈ Rn : ‖x − x∗‖ < δ0}, one has ‖x1‖ ≤ 1 + δ0,
and ‖x2‖ ≤ 1 + δ0. Then

‖∇2f (x1) − ∇2f (x2)‖
= m(m − 1)‖−(Ax1m−2 − Ax2m−2)‖
≤ m(m − 1)‖Ax1 · x1 · · · x1 − Ax1 · x1 · · · x2 + · · · + Ax1 · x2 · · · x2

− Ax2 · x2 · · · x2‖
≤ m(m − 1)(‖Ax1 · · · (x1 − x2)‖ + ‖Ax1 · · · (x1 − x2)x2‖ + · · ·

+ ‖A(x1 − x2)x2 · · · x2‖)
≤ m(m − 1)

(‖A‖F‖x1‖m−3 + ‖A‖F‖x1‖m−4‖x2‖ + · · · + ‖A‖F‖x2‖m−3)
× ‖x1 − x2‖

≤ m(m − 1)
(‖A‖F(1 + δ0)

m−3 + · · · + ‖A‖F(1 + δ0)
m−3) ‖x1 − x2‖

= (
m(m − 1)(m − 2)

(‖A‖F(1 + δ0)
m−3)) ‖x1 − x2‖.

Therefore, ∇2f is Lipschitz continuous near x∗. The Lipschitz continuity of ∇2h
is trivial since ∇2h(x) = 2I for all x. This completes the proof. �

The Lipschitz continuity of ∇2f and ∇2h allows us to find positive constants
δ∗
0 , L1 and L2, such that for any z := (x; y) ∈ N(z∗, δ∗

0 ),

‖∇xL(x, y) − ∇xL(x∗, y∗)‖ ≤ L1‖z − z∗‖,
‖∇2L(x, y) − ∇2L(x∗, y∗)‖ ≤ L2‖z − z∗‖. (10)

Specifically, note that

‖∇xL(x, y) − ∇xL(x∗, y∗)‖
= ‖−(mAxm−1 − mA(x∗)m−1) − (2yx − 2y∗x∗)‖
≤ ‖−(mAxm−1 − mA(x∗)m−1)‖ + 2‖yx − yx∗ + yx∗ − y∗x∗‖

≤
(m−2∑

i=0
m ‖A‖F

(
1 + δ∗

0
)i) ‖x − x∗‖ + 2(|y∗| + δ∗

0 )‖x − x∗‖ + 2|y − y∗|

≤
(m−2∑

i=0
m ‖A‖F

(
1 + δ∗

0
)i) ‖x − x∗‖ + (m‖A(x∗)m−2‖ + 2δ∗

0 )‖x − x∗‖

+ 2|y − y∗|
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≤
(m−2∑

i=0
(m ‖A‖F

(
1 + δ∗

0
)i
) + m‖A‖F‖x∗‖m−2 + 2δ∗

0

)
‖x − x∗‖

+ 2|y − y∗|

=
(m−2∑

i=0
(m ‖A‖F

(
1 + δ∗

0
)i
) + m‖A‖F + 2δ∗

0

)
‖x − x∗‖

+ 2|y − y∗|

≤
(m−2∑

i=0
(m ‖A‖F

(
1 + δ∗

0
)i
) + m‖A‖F + 2δ∗

0 + 2

)
‖z − z∗‖,

where the second inequality can be obtained by using the similar proof skills of
Theorem 3.1, and the third inequality follows from

| − 2y∗| ≤
∥∥∥mATm

(
x∗
T
)m−2

∥∥∥ =
∥∥∥mAT,T,·,...,·

(
x∗)m−2

∥∥∥
≤
∥∥∥mA (x∗)m−2

∥∥∥ , ∀ T ∈ Js(x∗),

owing to Theorem 2.5 and the fact x∗
Tc = 0 for any T ∈ Js(x∗). Thus, we can take

L1 =
m−2∑
i=0

(m ‖A‖F
(
1 + δ∗

0
)i
) + m‖A‖F + 2δ∗

0 + 2. (11)

Next, by direct manipulations, one has

‖∇2L(x, y) − ∇2L(x∗, y∗)‖

=
∥∥∥∥
[−m(m − 1)(Axm−2 − A(x∗)m−2) − 2(y − y∗)I −2(x − x∗)

−2(x − x∗)T 0

]∥∥∥∥
≤
∥∥∥∥
[−m(m − 1)(Axm−2 − A(x∗)m−2) 0

0 0

]∥∥∥∥
+
∥∥∥∥
[−2(y − y∗)I −2(x − x∗)
−2(x − x∗)T 0

]∥∥∥∥
≤ m(m − 1)‖Axm−2 − A(x∗)m−2‖ +

∥∥∥∥
[−2(y − y∗)I 0

0 0

]∥∥∥∥
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+
∥∥∥∥
[

0 −2(x − x∗)
−2(x − x∗)T 0

]∥∥∥∥
= m(m − 1)‖Axm−2 − A(x∗)m−2‖ + 2|y − y∗| + 2‖x − x∗‖

≤
(m−3∑

i=0
m (m − 1) ‖A‖F

(
1 + δ∗

0
)i) ‖x − x∗‖ + 2

√
2‖z − z∗‖

≤
(m−3∑

i=0
(m (m − 1) ‖A‖F

(
1 + δ∗

0
)i
) + 2

√
2

)
‖z − z∗‖.

Therefore, one can take

L2 =
m−3∑
i=0

(m (m − 1) ‖A‖F
(
1 + δ∗

0
)i
) + 2

√
2. (12)

We next discuss the nonsingularity of the reduced Jacobian matrix (9) under the
following assumption.

Assumption 3.1: Let x∗ be a strong β-Lagrangian stationary point of prob-
lem (1) with the Lagrangian multiplier y∗ ∈ R. For any T ∈ Js(x∗), −2y∗ is the
largest eigenvalue of BT = mATm(x∗

T)m−2, and −2y∗ is of multiplicity 1. More-
over, ∀ T ∈ Js(x∗), −2y∗ > (m − 1)λT , where λT is any other eigenvalue of BT
distinct from −2y∗.

For illustration, we give a simple example in which Assumption 3.1 holds.

Example 3.2: Let A = ∑R
i=1 αi(ui)m ∈ Sm,n with α1 > α2 ≥ α3 ≥ · · · ≥ αR ≥

0, and let U = [u1, . . . , uR] ∈ Rn×R be column orthogonal with ‖u1‖0 ≤ s (For
example, all diagonal tensors with the largest diagonal entry nonzero and of mul-
tiplicity 1). It is easy to verify that x∗ = u1 is the unique optimal solution of
problem (1), and

mA(x∗)m−2 = m
R∑
i=1

αiumi (x∗)m−2 = mα1u1u1T =: B.

Note that (
mA(x∗)m−1)

(�∗)c = (mα1u1)(�∗)c = 0.

Thus, by applying Theorem 2.2, x∗ is a strong β-Lagrangian stationary point of
problem (1) for any β ∈ (0,+∞). The correspondingmultiplier y∗ = −mα1

2 , due
to Theorem 2.5. For any T ∈ Js(x∗), BT is a rank-one matrix. Thus

−2y∗ > (m − 1)λT = 0,

for any other eigenvalue λT of BT . This indicates that Assumption 3.1 holds.
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Theorem 3.3: Let x∗ be a strong β-Lagrangian stationary point of problem (1)
with the Lagrangian multiplier y∗ ∈ R. We define that δ∗ := min{δ∗

0 , δ
∗
1 } with

δ∗
1 = mini∈�∗ |x∗

i | − βmaxi∈(�∗)c |∇xL(x∗, y∗)i|√
2(1 + βL1)

.

If Assumption 3.1 holds, then there exists constants δ̃∗ ∈ (0, δ∗] andM∗ ∈ (0,+∞)

such that for any z := (x; y) ∈ NS(z∗; δ̃∗) with NS(z∗; δ̃∗) := {z ∈ Rn+1 : x ∈ S,
‖z − z∗‖ < δ̃∗}, the reduced Jacobian matrix G(x, y;T) is nonsingular and

‖G−1(x, y;T)‖ ≤ M∗, ∀ T ∈ T(x, y;β).

Proof: We first prove that Assumption 2 of [21] holds when Assumption 3.1 is
satisfied. For any T ∈ Js(x∗),

(∇2
xxL(x

∗, y∗))T,T = (−m(m − 1)A(x∗)m−2 − 2y∗In)T,T

= (−m(m − 1)
∑
i3∈T

· · ·
∑
im∈T

aiji3···imxi3 · · · xim)i∈T,j∈T − 2y∗Is

= −m(m − 1)ATm(x∗
T)m−2 − 2y∗Is.

(13)

Since −2y∗ is the largest eigenvalue of BT , and −2y∗ is of multiplicity 1, we
know that the eigenspace of BT corresponding to −2y∗ is exactly Span(x∗

T). Let
the eigenvectors of BT corresponding to other eigenvalues λi be αi, i = 2, . . . , s.
Denote the orthogonal matrix U = [x∗

T ,α2, . . . ,αs]. Then we have

− (m − 1)BT − 2y∗Is

= −(m − 1)U

⎡
⎢⎢⎢⎣

−2y∗
λ2

. . .
λs

⎤
⎥⎥⎥⎦UT

+ U

⎡
⎢⎢⎢⎣

−2y∗
−2y∗

. . .
−2y∗

⎤
⎥⎥⎥⎦UT

= U

⎡
⎢⎢⎢⎣

(2m − 4)y∗
−2y∗ − (m − 1)λ2

. . .
−2y∗ − (m − 1)λs

⎤
⎥⎥⎥⎦UT.

(14)
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By virtue of the orthogonality ofU , we have that for any nonzero d ∈ N(x∗
T), there

exist not all zero scalars c2, . . . , cs ∈ R such that d = ∑s
i=2 ciαi. Thus,

dT(−(m − 1)BT − 2y∗Is)d

= (2m − 4)y∗(dTx∗
T)2 + (−2y∗ − (m − 1)λ2)c22‖α2‖4

+ · · · + (−2y∗ − (m − 1)λs)c2s ‖αs‖4

= (−2y∗ − (m − 1)λ2)c22‖α2‖4 + · · · + (−2y∗ − (m − 1)λs)c2s ‖αs‖4.
(15)

It is known from Assumption 3.1 that −2y∗ > (m − 1)λi, i = 2, . . . , s. Together
with the fact that ci, i = 2, . . . , s are not all 0 since d �= 0, we have

dT(∇2
xxL(x

∗, y∗))T,Td = −dT(m(m − 1)ATm(x∗
T)m−2 + 2y∗Is)d

> 0, ∀ 0 �= d ∈ N(∇Th(x∗)),

which yields that Assumption 2 in [21] holds. By invoking Theorem 3.1 and [21,
Theorem 5], we can find δT > 0 and MT > 0 for any T ∈ T(x, y;β), such that
‖G−1(x, y;T)‖ < MT . Set

δ̃∗ := min{δ∗, {δT}T∈Js(x∗)}, M∗ := max
T∈Js(x∗)

{MT}. (16)

It follows readily that for any z = (x, y) ∈ NS(z∗; δ̃∗), G(x, y;T) is nonsingular
and ‖G−1(x, y;T)‖ ≤ M∗, for all T ∈ T(x, y;β). �

4. Lagrange–Newton algorithm

In this section, we give the framework of Lagrange–Newton algorithm (LNA) for
solving problem (1) and establish its locally quadratic convergence.

LNA is essentially a process of iteratively solving F(x, y;T) = 0 by using New-
ton method and updating the corresponding index set T(T ∈ T(x, y;β)). Let
(xk, yk) ∈ S × R be the current iteration. Given β > 0, we work on the following
Newton equation to get the next iterate (xk+1, yk+1):

∇(x,y)F(xk, yk;Tk)(xk+1 − xk; yk+1 − yk) = −F(xk, yk;Tk). (17)

After simple calculation, (17) can be reduced to⎧⎪⎨
⎪⎩
xk+1
Tc
k

= 0,

G(xk, yk;Tk)

[
xk+1
Tk − xkTk
yk+1 − yk

]
=
[(

mA(xk)m−1)
Tk

+ 2ykxkTk
(xk)Txk − 1

]
.

(18)

The above system admits a unique solution sinceG(xk, yk;Tk) is nonsingular due
to Theorem 3.3, and hence the new iteration is well-defined.
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To measure the accuracy of the numerical solution, we adopt the following
metric from [21],

ηβ(xk, yk;Tk) = ‖F(xk, yk;T)‖ + max
i∈Tc

k

{max(|∇xL(xk, yk)i| − |xk|(s)/β , 0)},
(19)

where the first term is to characterize the solution accuracy of the Newton step,
and the second term is for the correctness of the support set. The algorithmic
framework of LNA is summarized in Algorithm 1.

Algorithm 1 LNA for solving problem (1)
Step 0 Choose β > 0, ε > 0. Set k = 0 and choose the initial point (x0, y0) ∈
Rn × R.
Step 1 Choose Tk ∈ T(xk, yk;β) by (6).
Step 2 If ηβ(xk, yk;Tk) ≤ ε, then stop. Otherwise, go to Step 3.
Step 3 Update (xk+1, yk+1) by (18), set k = k + 1 and go to Step 1.

Theorem 4.1: Let x∗ be a strong β-Lagrangian stationary point of problem (1)
with the Lagrangian multiplier y∗ ∈ R and Assumption 3.1 hold. Suppose that
the initial point z0 of sequence {zk} := {(xk, yk)} generated by LNA satisfies z0 ∈
NS(z∗, δ), where δ = min{δ̃∗, 1/M∗L2} with δ̃∗,M∗ defined in (16). Then for any
k ≥ 0,

(i) limk→∞ zk = z∗ with quadratic convergence rate, i.e.

||zk+1 − z∗|| ≤ M∗L2
2

‖zk − z∗‖2.

(ii) LNA terminates with accuracy ε when k ≥ � log2(4δ
√

L12+1/ε)
2 �.

Here L1 and L2 are defined as in (11) and (12) by replacing δ∗ with δ.

Proof: By employing Theorem 3.3, we know that the sequence {zk} generated by
LNA iswell-defined from the nonsingularity ofG(xk, yk;Tk) for all k ≥ 0. In addi-
tion, we know from [21, Theorem 6] that LNA enjoys the locally quadratic con-
vergence ifG(xk, yk;Tk) is nonsingular for all k ≥ 0. Thus, utilizing Theorem 3.3,
the desired properties (i) and (ii) are consequences of [21, Theorem 6]. �

5. Numerical experiments

This section reports some numerical experiments on synthetic data and the
real Hypergraph data. All experiments are implemented in MATLAB R2020b,
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running on a laptop computer of 8GB memory and Inter(R) Core(TM) i7
2.8Ghz CPU. Our codes are available at https://github.com/BJTUShuaiLi/LNA-
for-TSPCA-.

We verify the effectiveness of the proposed TSPCA by comparing it with two
approaches: alternating direction method of multipliers (ADMM) for nuclear
norm penalty problem [7] and GloptiPoly3 (GLP) [22]. In [7], the even order
tensor PCA problem without sparsity constraint is reformulated as the following
optimization

minX∈Rnd×nd −Tr(AmX) + ρ‖X‖∗
s.t. X ∈ C,

(20)

where Am := M(A) ∈ T2,nd and X := M(x2d) ∈ T2,nd are the mode-(1, . . . , d)
unfolding matrices of A and x2d, respectively. C := {X ∈ S2,nd |Tr(X) = 1,M−1

(X) ∈ S2d,n}, ρ > 0 is a regularization parameter. By introducing the auxiliary
variable Y = X, the Lagrange multiplier� and the penalty parameterμ > 0, the
iterative scheme of ADMM for solving (20) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xk+1 := argmin
X∈C

−Tr
(
AmYk

)
+ ρ

∥∥∥Yk
∥∥∥∗

−
〈
�k,X − Yk

〉
+ 1

2μ

∥∥∥X − Yk
∥∥∥2
F
,

Yk+1 := argmin
Y

−Tr (AmY) + ρ‖Y‖∗ −
〈
�k,Xk+1 − Y

〉
+ 1
2μ

∥∥∥Xk+1 − Y
∥∥∥2
F
,

�k+1 := �k − (Xk+1 − Yk+1)/μ.

Throughout our experiments, the parameters used in LNA are chosen as β =
0.01, y0 = 1. We terminate LNA whenever ηβ(xk, yk;Tk) ≤ 10−6 or iteration k
reaches 1000. For ADMM, the parameters are chosen as μ = 0.5 and ρ = 10,
and we terminate it whenever∥∥Xk − Xk−1

∥∥
F∥∥Xk−1

∥∥
F

+
∥∥∥Xk − Yk

∥∥∥
F

≤ 10−6.

In the following testing examples, we record the comparisons between LNA and
other algorithms in the average relative error (Re), CPU time (Time) and the
number of iterations (Iter). Here, Re is defined as

Re = ∥∥x̂ − x∗∥∥ /
∥∥x∗∥∥ ,

where x̂ is the optimal solution of problem (1) produced by one algorithm. The
symbol ‘-’ is used to represent the cases that Time reaches 1 hour.

5.1. Synthetic data

In this subsection, we utilize the synthetic data in Example 3.2 to test the
effectiveness of our approach.

https://github.com/BJTUShuaiLi/LNA-for-TSPCA-
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Table 2. Numerical comparison of Example 5.1.

n s Re(LNA|GLP|ADMM) Time(s)(LNA|GLP|ADMM) Iter(LNA|GLP|ADMM)
5 1 1.94e-12|6.39e-06|8.30e-07 0.142|1.185|4.342 4|8|409
10 1 1.16e-11|7.89e-06|1.43e-06 0.145|3.455|59.632 5|8|1452
15 1 3.34e-11|4.82e-05|3.89e-06 0.164|108.183|305.023 5|8|3194

2 1.62e-10|5.88e-05|2.33e-06 0.175|114.653|313.056 5|9|3212
20 1 1.19e-11|3.64e-06|3.01e-06 0.186|2056.337|1121.042 4|8|5416

2 1.62e-10|5.32e-05|3.00e-06 0.180|2367.227|1138.193 5|9|5523
30 1 1.93e-10|-|- 0.184|-|- 4|-|-

2 1.43e-11|-|- 0.164|-|- 7|-|-
3 9.09e-11|-|- 0.193|-|- 5|-|-

50 1 4.33e-10|-|- 0.168|-|- 5|-|-
3 7.72e-11|-|- 0.170|-|- 5|-|-
5 3.35e-09|-|- 0.188|-|- 4|-|-

100 1 3.59e-11|-|- 0.187|-|- 5|-|-
5 8.32e-11|-|- 0.204|-|- 6|-|-
10 8.87e-11|-|- 0.193|-|- 5|-|-

Example 5.1 (Third-order random tensors): We use the following pseudo
MATLAB codes to generate third-order random tensors A = ∑R

i=1 αi(ui)3

claimed in Example 3.2, the ground truth x∗ and the initial point x0 adopted in
LNA.

u1 =u2 =u3 =zeros(n,1), α = [3, 2, 1], � =randperm(n,s),
u1�(1,s)=randn(s,1),

u2�(s+1,n−1)=randn(n-s-1,1), u3�(n)=randn(1), A = ∑3
i=1 αi(ui/

||ui||)3, x∗ = u1, x0 = x∗ − 0.1 · rand(n,1).

Example 5.2 (Fourth-order random tensors): Let A = ∑R
i=1 αi(ui)4 be a

fourth-order random tensor. We generate the tensorsA, the ground truth x∗ and
the initial point x0 adopted in LNA in the same fashion as Example 5.1, in which
ui, i ∈ [3] are generated from the uniform distribution U(0, 1).

Set the sparsity s = �0.01n�, �0.05n�, �0.1n� in the above two examples.
Numerical results are collected in Tables 2 and 3. As shown in Table 2, when
n = 5, 10, 15, 20, LNA has the significant superiority than GLP and ADMM in
terms of Re and Time. For the testing instances of n ≥ 30, GLP and ADMM
report more than an hour of Time, while LNA remains stable in Re, Time and
Iter. Moreover, we can see from Table 3 that LNA gives the highest solution accu-
racy and the least CPU time in the instances of n = 5, 10, 15, 20. See, e.g. for
the case of n = 20 and s = 2, Re and Time reported by LNA are no more than
1/(2.5 × 106) and 1/5000 of those by GLP and ADMM, respectively. With the
increase of n, Time reported by GLP and ADMM reaches an hour, while LNA
maintains excellent performances with the high solution accuracy and short CPU
time under different n and s.
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Table 3. Numerical comparison of Example 5.2.

n s Re(LNA|GLP|ADMM) Time(s)(LNA|GLP|ADMM) Iter(LNA|GLP|ADMM)
5 1 1.87e-11|1.56e-05|8.38e-07 0.151|1.228|4.239 5|8|372
10 1 3.56e-12|6.77e-06|1.41e-06 0.202|3.778|54.329 6|7|1235
15 1 1.88e-11|2.03e-05|3.76e-06 0.174|101.625|243.852 6|9|2548

2 6.55e-12|1.12e-05|6.33e-06 0.188|107.332|262.714 5|9|2699
20 1 6.99e-12|4.80e-06|2.43e-06 0.211|2270.975|1019.762 6|7|4123

2 1.51e-11|4.42e-05|7.32e-05 0.193|2525.496|998.904 5|7|4289
30 1 4.01e-10|-|- 0.194|-|- 5|-|-

2 6.09e-10|-|- 0.197|-|- 5|-|-
3 6.19e-11|-|- 0.218|-|- 5|-|-

50 1 6.76e-10|-|- 0.315|-|- 5|-|-
3 3.78e-10|-|- 0.323|-|- 6|-|-
5 1.48e-11|-|- 0.324|-|- 5|-|-

100 1 3.78e-11|-|- 3.173|-|- 6|-|-
5 5.92e-11|-|- 3.604|-|- 6|-|-
10 1.96e-11|-|- 4.143|-|- 7|-|-

5.2. Hypergraph data

In this subsection, we test the effectiveness of our method on two types of hyper-
graph data sets, including the structured hypergraphs in Example 5.4 and the real
social network data in Example 5.5.

For the following testing examples, the objective function value (Obj) is also
adopted tomeasure the performances of three competitors. One aims to calculate
the sparse principal components of the adjacency tensors of hypergraphs, where
the adjacency tensor of a k-uniform hypergraph is defined as follows.

Definition 5.3: Let G = (V ,E) be a k-uniform hypergraph (each edge connects
exactly k vertices) with the vertex set V = [n] and the edge set E = {e1, . . . , em}.
The adjacency tensor of G is defined as the k-th order n-dimensional tensor A
whose (i1, . . . , ik)-entry is:

ai1...ik :=
{

1
(k−1)! , if {i1, . . . , ik} ∈ E,
0, otherwise.

(21)

Example 5.4 (Structured hypergraphs): This example considers three impor-
tant structured hypergraphs: sunflower, hypercycle and squid. A k-uniform
hypergraph G = (V ,E) is called

• a sunflower if ei = {(i − 1)(k − 1) + 1, (i − 1)(k − 1) + 2, . . . , i(k − 1), n}
for all i ∈ [m] and n = m(k − 1) + 1;

• a hypercycle if ei = {(i − 1)(k − 1) + 1, (i − 1)(k − 1) + 2, . . . , i(k − 1) +
1} for all i ∈ [m − 1], em = {(m − 1)(k − 1)+ 1, . . . ,m(k − 1), 1} and n =
m(k − 1);

• a squid if ei = {(i − 1)k + 1, (i − 1)k + 2, . . . , ik} for all i ∈ [m − 1], em =
{(i − 1)k + 1 | i ∈ [m]},m = k and n = (m− 1)k + 1.
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Figure 1. Illustration of structured hypergraphs. (a) and (d): sunflower; (b) and (e): hypercycle; (c)
and (f ): squid. (a) n = 7,m = 3, k = 3, (b) n = 6,m = 3, k = 3, (d) n = 10,m = 3, k = 4, (e)
n = 9,m = 3, k = 4 and (f ) n = 13,m = 3, k = 4.

Figure 1 gives the illustration of the above three structured hypergraphs. In
this example, the corresponding supersymmetric tensor A ∈ Sk,n in the TSPCA
problem (1) is constructed by (21) for the given n, m, k and edge set E =
{e1, . . . , em}.

Example 5.5 (Social networks): We use three real data sets about social net-
works (email-Enron, contact-primary-school and contact-high-school)1. In the
email-Enron data set, each vertex corresponds to an email address, and each
hyperedge consists of the sender address and all recipient addresses on this email.
In the contact-primary-school and contact-high-school data sets, each node is a
person and each hyperedge is a set of persons in close proximity to each other.

Figure 2 shows the 3-uniform hypergraph generated from the above real
datasets. Taking email-Enron as an example, we pick out the hyperedges with
three vertices to form a 3-uniform hypergraph G = (V ,E), whose vertex set V
consists of 148 email addresses, and edge set E consists of all 324 hyperedges with
three email addresses. The corresponding supersymmetric tensor A ∈ S3,148 of
the 3-uniform hypergraph G can be generated by (21).

Table 4 records the numerical results of Example 5.4. As shown in Table 4,
LNA reports the comparable Obj with GLP and ADMM, while the time of LNA
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Figure 2. The hypergraphs constructed by (a) email-Enron (n = 148, m = 324, k = 3); (b)
contact-primary-school (n = 242, m = 4622, k = 3); (c) contact-high-school (n = 327,m =
2126, k = 3).

Figure 3. Numerical results for social network data. (a) email-Enron(n= 148), (b) contact-
primary-school(n= 242) and (c) contact-high-school(n= 327).

is much less than the other two methods for all three cases of structured hyper-
graphs. Moreover, Figure 3 illustrates the results of Example 5.5. It can be seen
from Figure 3 that LNA gives the superior performances on all three real social
network data sets. With the increase of sparsity s, LNA performs very stable in
terms of running time, which is basically less than 1.5 seconds for all testing
instances. In addition, the time of GLP and ADMM is more than 1 hour when
solving tensors with n = 30. Obviously, the time advantage of LNA is even more
significant when dealing with large-scale data.

Overall, LNA is an efficient and stable approach in solving our proposed
TSPCA problem (1), it can achieve the high solution accuracy with a low time
cost.

6. Conclusions

In this paper, we established the optimization model for tensor SPCA, in which
the original �0-norm constraint is used for solving sparse principal components.



2950 S. LI ET AL.

Table 4. Numerical comparison of Example 5.4.

m n Obj(LNA|GLP|ADMM) Time(s)(LNA|GLP|ADMM)
sunflower 3 7 0.577|0.577|0.568 0.157|1.478|15.076

4 10 0.250|0.250|0.250 0.180|17.732|26.203
hypercycle 3 6 0.577|0.667|0.582 0.160|1.327|8.382

4 9 0.250|0.250|0.250 0.171|11.657|19.553
squid 3 7 0.577|0.577|0.568 0.152|1.373|15.072

4 13 0.250|0.250|0.250 0.170|66.747|70.269

For the formulated TSPCA optimization problem, the first-order optimality con-
dition was established by utilizing the sparse projection operator. Under some
mild conditions, we showed the nonsingularity of Jacobian matrix for the cor-
responding Lagrangian stationary equation system. Based on this, the LNA
algorithm was adopted to solve TSPCA. Meanwhile, we established its locally
quadratic convergence. Numerical experiments showed the effectiveness of our
proposed method comparing with two state-of-the-art approaches.

Note

1. The social network data are available in Temporal higher order networks (hypergraphs)
at https://www.cs.cornell.edu/∼ arb/data/.
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